Brigham Young University

BYU ScholarsArchive

Theses and Dissertations

1985-04-01

Flexible Engineering Software: An Integrated Workstation
Approach to Finite Element Analysis

Brant Arnold Ross
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

b Part of the Mechanical Engineering Commons

BYU ScholarsArchive Citation

Ross, Brant Arnold, "Flexible Engineering Software: An Integrated Workstation Approach to Finite Element
Analysis" (1985). Theses and Dissertations. 3460.

https://scholarsarchive.byu.edu/etd/3460

This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for
|ncIu3|on in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more
archive@byu.edu, ellen_amatangelo@byu.edu.

www.manharaa.com

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F3460&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Fetd%2F3460&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/3460?utm_source=scholarsarchive.byu.edu%2Fetd%2F3460&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

FLEXIBLE ENGINEERING SOFTWARE: AN INTEGRATED WORKSTATION
APPROACH TO FINITE ELEMENT ANALYSIS

BRANT ARNOLD ROSS

FLEXIBLE ENGINEERING SOFTWARE: AN INTEGRATED WORKSTATION

APPROACH TO FINITE ELEMENT ANALYSIS

A Dissertation
Presented to the
Department of Mechanical Engineering

Brigham Young University

in Partial Fuifiliment
of the Requirements for the Degree

Doctor of Philosophy

by
Brant Arnold Ross

April 1985

This Dissertation, by Brant Arnold Ross, is accepted in its present
format by the Department of Mechanical Engineering of Brigham Young
University as satisfying the dissertation requirement for the degree of
Doctor of Philosophy.

7_.- 1] _;_/t/ ‘1(« (t,f/ﬁh/"ﬂ.f_-'\..__
Kenneth W. Chase, Committee Chairman

S 5&4

Steven E. Benzley, ittee Member

Al € fkri

Alan R. Parkinson, Committee Member

J L1 CARY Y 1905
Date

i

ACKNOWLEDGEMENTS

When the author was laid-off from the Dubuque Works of John
Deere on December 8, 1982, the choice was between finding another job,
and going back to school. The support of his wife, Janna, who was willing
to sacrifice for the third time for his education is greatly appreciated

Thanks is given Dr. Kenneth Chase for arranging for a return to
Brigham Young with three weeks notice, and for his support throughout
this degree. Thanks are also due for the funding and direction provided by
Dr. Steven Benziey, and encouragement from Dr. Alan Parkinson.

Funding was received from the Brigham Young University Coliege
of Engineering and Technology Research Chair in System Integration, held
by Dr. Steven E. Benziey of the Civil Engineering Department. Funding
provided by the Naval Weapons Center at China Lake under Contract
N60530-84-M-ER77 was also helpful.

Hewlett-Packard provided various computer systems that have
supported this research. More importantly, they have supported the
graduate work of Terril N. Hurst, who has been a constant source of insight
in the engineering design process. Wrestling over new concepts in
engineering software with Terril has been a crucial part of this research.

Thanks are given to the Engineering Computer Services group at
the Dubugue Works of John Deere. The experience and knowledge they

shared was a helpful preparation for this research.

11

TABLE OF CONTENTS

ACKMOWLEDDEMIENES . .; 5o vai 50 0 moss 2o siosn 5506 5008 58 5 58 880 il § i

LIST OF JLLUSTRATIONS i e e Vi
Chapter

t: INFRODUCTION v vma o sws soray o5 wea 2o 105 2 6 65 ¢ 1

2. HISTORY OF ENGINEERING COMPUTING 10

DELEN PrOCRSSING . . oo oinis wove s bops i 8058 wimm wias ke b & 10

Interactive Systems i 12

Computer Graphics. 13

DASIrIDUIR BYSYCMIE:: v wus mws go e €5 5 1 Co Q50 K8 w60 5 16

THE Call FOr 1DLegration: o .oo vao sus i s e s 5as o 17

An Integrated Design Process. ... es e ves see oo oo 18

Databases - The Centralized Solution................ 21

Current Progress In Integration. e o sos waoe i 23

3. TRANSFER OF FINITE ELEMENT DATA 25

opening the'Data Path: con vovw v s v sow wos e s s 25

Neutral File Development 26

Producing the Neutral Filecc0ccnnonimnnn. 29

Reformatter Development. 30

4. AN ENGINEERING WORKSTATION ENVIRONMENT 33

Workstation EnVIFODMENE . v o v vu b i san g ases vase va 4 34

Data Eile Management . .. soucoy savsne oa v s o 0uis 55 ; 36

IAUStrY ADDUICAEION . o v was s s ol 5 o o oiwsees e s 38

v

hbll-odcm
Typewritten Text
0

hbll-odcm
Typewritten Text

S. DEVELOPING ENGINEERING SOFTWARE......... s g g 41

8 ASAILE PROBLEI . voicn o vun somiiiimns ng wogs seis s 48
PIOTE] BBIEPALION . oov vous v 6 ms monh mimce wiese mitns sn # s x bk st 50

Neutral File Generation and Transfer................. 21

The SAP IV ADBIYSES. . .. cuw s sivs o oo wias ssne sve s g 53

7. DISCUSSION :AND CONCLUSIONS .. .o wovvi s insom inn s 56
PEA DB TranStor su v v sus wom v o s i 5 o 6% Su 5% 3 56
Engineering Workstation Environment. p——— 57
Engineering Software Development 58

FULURE WOTK. ..o vimie s smn w55 o s sowm wusse aoms S5u0e 55w iy on e o8
REFERENCES 60

Appendix

A. ROSETTA DOCUMENTATION 65
B. DAVINCE DOCUMENTATION. ... cux von vnn nm ws s v o i 94
€ SQUIRE PROGRAMMIING GUIDE:o coi s vvwnm oms o v 137
D. CV FEM COMMAND SUMMARY 166

hbll-odcm
Typewritten Text
6

Figure
1.1
21
2.2
2.3
2.4
2.3
3.1
3.2
41
42
43
44
45
o1
6.1
6.2
6.3
6.4

Table
3.1
3.2
21
5.2

LIST OF ILLUSTRATIONS

Path of Finite Element AnalysisData. S
Development of Engineering Computing................... 11
BObOL WEPKEBTY o can v swsna vioin vn% o 8 008 65 B VaG S35 & 19
A Typical Product Development Cycle 18
Engineering Organizational Grouping..................... 20
Effect of Location on Communication. 20
Finite Element Relationships 26
Sample Portion of Neutral File fromCV................... 29
Davinci Software for Workstations 33
DAVINE] COMMANAST « civan v vus o 568 565 5058 SeE- 09 dmg ol Ea 3D
ON=LANE DOCUMBIEALION. ..o ».v oo pormns fis mss soms moovs stk sdis s 37
Software Demonstration. 37
Functional Diagram of Davinci Software. 39
Sample Multi-Level Promptsccoiiiiiininn. 46
DISC DPIVe HBA. - cos coomisn vurs s sy iprn wase sms i aswna vis svas 49
Disc Drive Head Finite Element Mesh (Exploded View) S1
Oblique View of Torsional™Mode.covvvn.. 54
Front View O Torsional PIOGR.o« vs wes som o sy a0 v o s 55
FEANEULr3] F118 ERLILIES . . o v co i v sws svss s s s it 27
Maiy Options of ROSELYS o v i v v von s v i swvsi 5 05 5 31
Software Development Process.cccvviivninenn. 42
Sections of Software Documentation..................... 43

Vi

CHAPTER 1

INTRODUCTION

The computer has taken an increasing role in design, analysis,
and manufacturing activities over the last fifteen years. Its ability to
quickly calculate, store, and recall information may be used to improve the
efficiency of engineering tasks. Computer methods have been successfully
used in finite element modeling (FEM) of structures, simulation of dynamic
systems, automated drafting, and automatic process planning, to name a
few areas. Organizations now realize that they must efficiently use the
computer in engineering product development to remain competitive [1].

Computer hardware has significantly improved in récent years.
Engineering software remains as the bottieneck preventing better use of
the computer in engineering. Past software development has demonstrated
the computer’s ability to efficiently perform specific engineering tasks.
The current challange is to properly integrate these capabilities such that
engineering organizations may reduce their product development time [2].

A brief overview of the history of engineering software is given
in Chapter 2. Past experience in software development and software use
in engineering organizations suggest that the following points are
important in the successful integration of software:

1

1. Data standards are needed for the smooth flow of data
between tasks.

2 Computer users will tend to change from specialists to
generalists as software becomes easier to use.

. Better (more consistent) user interfaces are needed as the
casual user works with a wider variety of software.

4 Flexibility must be built into software to aliow each
organization to adapt it to their product development process.

The objective of this research is to apply the above rules of
integration to Finite Element Analysis (FEA) in a general way, such that
this work may be extended to other areas. FEA is an ideal starting point
for this research because: 1) it has existing data standards, 2) it is used
by a wide variety of engineers, and 3) it is the focal point of engineering
analysis in many organizations(3]

As software was developed to manipulate FEA data, a new
software concepts for the engineering workstation environment evolved.
Consider two creative men in engineering design, Edison and DaVinci.
Edison was a specialist and conducted research with a laboratory fully
staffed with specialists. DaVinci was a generalist and did most of his
work by himself. Much of the existing engineering software requires a
specialist because it is difficult to use. It is important for the user to be
technically competent, but today many have become specialists because
they have learned the "tricks” of using a particular piece of software on a
particular computer. As software is improved it will become easier to

use. The technically competent user will be able to use a wide set of

software tools for analysis and design. Users will tend to change from
software specialists to software generalists. This work describes a new
approach to establishing an engineering workstation environment for the
engineering user of the future, who will use many software tools.

This report will describe the development of three major pieces
of software. Rosetta.BYU accepts FEA data in a neutral format and
produces input data files for various FEA programs (see Chapter 3). It
allows the FE analyst to use data from mesh generators (CAD system or
stand alone) more effectively. Currently, most mesh generators generate
input data only for popular FEA codes, such as Nastran and Ansys. No
pathway existed to programs developed in-house or less popular programs
such as Nisa or Abaqus. Rosetta opens that path using two neutral
formats: 1) the Navy neutral file format developed jointly by the author,
Dr. Steven Benzley of Brigham Young University and representatives from
various United States Naval Weapons Laboratories(4] and 2) finite element
entities that are a subset of the IGES Version 2.0 standard[5].

The use of data standard standards reduces the number of paths
between CAD systems and analysis programs (see Figure 1.1). Rosetta has
the capability to input and output FEA data using the Navy neutral format
and the IGES format. Input data sets may be created for the following FEA
programs: Abaqus[6] and SAP IV[7], and graphics program Movie.BYU[8].
Support of additional programs requires an added subroutine to unload the
data structure in the format of that program. The dynamically-allocated

data structure provides the following:

1 Model checking to detect missing nodes and elements,
and elements without material properties.

2 Complete editing for each of the 14 FEA data entities.
Geometry may be input from a file and the rest of the
model entered interactively.

5§ Renumbering of entities to eliminate gaps in ID numbers,
which are unacceptable for some FEM programs. Gaps are
sometimes left in the model by the mesh generator.

4 Reordering of the data set to make it more understandable.

A library of finite elements used by Nastran, Abaqus and SAP |V
is used by Rosetta to convert finite element models from one data
standard to another. The library indicates the IGES topology type of each
element and the relationship between the local node numbers of the
element and the IGES element.

Davinci.BYU helps the analyst classify software and data files
(see Chapter 4). The analyst can easily organize a library of programs into

menus interactively. For each program, Davinci will store:

1. The program execution instruction.
A brief description of the program.

Location of manual and support people.

A NN

Location of the source file for the program.

Data files may also be classified using up to six user-defined

categories, as well as by size, time of creation and name. Davinci

Mesh
Generators
Navy Neutral IGES FE.aj Movie BYU
PR R FEA Format Entities Geometry

Reformatter | RosettaBYU

Analysis

Programs

Graphics Movie.BYU
Output -Display-

Figure 1.1 Path of Finite Element Analysis Data

automatically prompts for information on new data files as they are
created. It can store information on backed-up files. A few suggestions

for categories that might be used to organize data files follow:

I By program name - linking each file to the program it is used
with: Nastran, Visicalc, etc.

2. By project - linking each file to the appropiate project number,
name, or charge code.

3, By product - using a product number or name.

4 By customer - for users who provide analysis services.

Two subsets of the Davinci program were created for use in
multi-user environments (mainframes, shared minicomputers, etc.). In
this role Davinci would manage software shared by a group of computer
users. Data file management features are removed from both versions, and
edit features appear in the system manager's version (Sentinel) but are
removed from the user's version (Gateway). Davinci helps users share
software and aids communication of software status.

Squire.BYU is a library of routines that provides a consistent,
high-quality interface for interactive Fortran programs (see Chapter 5).
Input, editing, option selection, file handling, and various utility
functions are included. Users benefit when this library is used with a set
of software, because input and editing procedures are consistent from one
program to another.

Squire routines adapt input to both new and experienced users, by
providing three levels of prompts for each input. The first level is terse
for the expert user. The second level is a fairly complete description and
the third level suggests a response. If the user can't answer a gquestion
from the first level prompt, the second and third levels can be seen by
hitting the return key without giving a response. Multipie responses may
be given at one time, by placing them separated on one line with a space or
comma. This allows the expert user to answer ahead and avoid prompts.

A set of general subroutines may be used to edit real, integer and
text items. The Squire routines take care of the editing details while
allowing the programmer the flexibility of formatting the data for each
specific application. The Squire.BYU library is used by Rosetta.BYU and
Davinci.BYU.

One unique aspect of the three above pieces of software is their
portability [9]. As they were developed they were periodically compiled
and run on a variety of computers: an HPS000/HP-UX, VAX/VMS,
VAX/Berkeley 4.2 Unix and IBM 4341/VM. One version of each program runs
on all computers. The few system dependent statements are clearly
marked, with statements included for each machine. Unused statements
are commented out. Moving the program to a different computer then
requires only that a different set of statements be used.

This software was used to perform a modal analysis of a disk
drive component (see Chapter 6). The sample problem required the

following:

B The basic geometry of the component was created on a

ComputerVision CADDS4 system. A mesh was generated.

2. The FEA data was put into a neutral format using the PUTFEM
software developed at China Lake Naval Weapons Center.

2. The neutral file was transferred by tape from the Computer
Vision to @ VAX/VMS system, then to an HP9000/520.

4 Using the HP9000/520, the neutral file was processed by Rosetta

and a SAP |V input file was produced of the FEA model.

o Analysis specification cards were added to the SAP IV input file
and a2 mode shape analysis was performed on the HP3000/520.
SAP IV has been modified to directly produce output files
compatible to the Movie.BYU graphics package.

6. Movie.BYU data files were transferred to a VAX/VMS system.
Color continuous pictures were generated and photographed
for each mode shape with Movie.BYU.

Z A 16mm movie was made of several animated mode shapes.
Some 360 frames were shot for each 30-second animation.

The animation feature of Movie was used to produce the frames.

The 9000 software was organized and managed using the Davinci
program. Davinci also contained information to help the user understand
the software, in the form of on-line documentation and automatic
demonstration of software capabilities.

In summary, the original contributions of this work are all
related to development of a unique engineering workstation environment.
This environment is designed to take advantage of anticipated advances in
computer hardware and data standards. The following original

contributions are implemented (see also Chapter 7):

1. Development of an easy-to-understand FEA data standard in
conjuction with the Navy.

2. Development of a library of finite element information used to
convert data from one standard to another.

3 Use of FEA data standards to link FEA analysis with pre- and
post-processing.

4 Solution of the problem of linking custom in-house codes to

standard CAD/CAM mesh generators.

o Creation of a Fortran library of routines to provide a consistent
user environment and reduce programming efforts.
6. Use of classification techniques to organize programs and data

files as the engineer pursues a wider range of techniques.

Efforts to improve the engineering design process with the
computer must focus on interaction between existing software. It is not
enough to perfect each step in the process, rather the process as a whole
must be improved. This work has produced software tools to improve the
finite element modeling and analysis process. More work is needed to
extend these concepts over a broader portion of the design process. Data

standards must continue to improve and spread to more technical areas.

CHAPTER 2

HISTORY OF ENGINEERING COMPUTING

This chapter provides an overview of the history of engineering
computing, starting in the late nineteen sixties. Understanding technical
computing development is important because it explains some current
practices. Change is always met with some inertia. Understanding past

techniques makes it easier to develop compatible new methods.

Batch Processing

In the early ninteen sixties, most engineering companies used
computers in a batch mode. Batch processing requires that input data
(programs, data, instructions) be stored on some physical medium
(keypunch cards, paper tape, etc.) to be processed by the comouter in one
stream. A unigue set of output resuited from any set of input data. Ali
instructions were fixed before processing, no intermediate adjustments
were possible. The engineer's only contact with the computer was a card
reader and printer. A typical computer job was to run a set of cards
through the card reader in the morning and return in the afternoon to
search through a pile of computer output. The problems with batch
processing may be categorized into four major areas (see aiso Figure 2.1);

10

I

Data stored on keypunch cards or paper tape was hard to review;
consequently it was difficult to find errors. Once errors were
detected, a new keypunch card or paper tape was needed. Care
was needed to correct existing errors without adding new ones.
The delay in receiving output that was characteristic of batch
processing made it difficult for the engineer to maintain a train
of thought in his computer work. The engineer could only submit
a few sets of input each day because of the excessive delays.
Communication with other users was poor. The only way to
share input data or programs was to physically exchange the input
media. Those who worked in different locations found this very
difficult. Poor communication discouraged the development of
standards to facilitate data transfer.

The user had no control over response time. Operating procedures

were handed down to the engineeer.

BATCH INTERACTIVE
Problems: Improvements:
e Hard to Edit e Fuli-Screen Edit
e Delay in Feedback e Quick Feedback
e Poor Communication with e Access to files from

other users other users
e |ittle local control
GRAPHICS DISTRIBUTED NETWORKS
Improvements: Improvements:
e Analysis output is clear. e Local control

User can do "what if” Problems:
e Poor communication with
other users

Figure 2.1 Development of Engineering Computing.

12

Interactive Systems

In the middle nineteen seventies, interactive computer systems
were introduced. Keypunch card and paper tape machines were replaced
with termninals with cathode-ray tube (CRT) screens. An entire screen of
data could be modified by moving a cursor about using arrow keys, and
typing over errors. This made program and data modification easy. It was
easier to check for errors and harder to inadvertantly tamper with good
data.

Computer response was better in interactive systems. The user
could make corrections during program execution and run as many processes
as he liked. Response was quick enough to allow the engineer to modify data
and retry an analysis to test the sensitivity of his design parameters. Also,
programs could be written to adaptively prompt for information based on
earlier input [10].

With interactive systems, each user controiled a portion of the
disk space. |t was easy to share information with other users and was a
good environment for user interaction. However, little effort was made to
set standards and pursue integration. Why? Because it was a time of
specialization, and the specialists were not interested in interacting with
others. The attitude of the specialist is described by Toffler [11]:

... specialization was accompanied by a rising tide of
professionalization. Whenever the opportunity arose for some

group of specialists to monopolize esoteric knowledge and keep
newcomers out of their field, professions emerged.

The sophisticated analysis and modeling that became possible

with the computer produced many different specialities. New capabilities

13

to soive a large number of equations were used by some to analyze
structures using finite element techniques [3], by others to study the
kinematics and dynamics of mechanisms[12], and stiil others to analyze
vibrations [13]. Seireg [14] comments on the development of speciaiities
within the product design and manufacturing cycle:

It is only natural that in the formative stage a
technology develops along specialized lines to meet specific
needs. Factory automation is no exception. Manufacturing
encompasses business as well as several branches of
engineering. These long established discipiines have
articuiated differing philosophies, methods, and means of
communication. Marketing, finance, design, analysis,
drafting, production planning, value engineering, fabrication,
materials handling, process control, assembly, quaiity
assurance, purchasing, inventory control, warehousing,
human resource management- the professionals in each of
these tasks have begun to use computer hardware,

languages, and methodologies that are designed for their
particular needs but that may not interface . ..

The pioneers who developed new computer toois for engineering
devoted their resources to their own speciaity. In general, they couid not
justify the effort needed to interface their work with others. Some
attempts were made to combine engineering software from different
specialitities, but resuited in very specific tools that were not wigeiy

accepted or used [15].

Computer Graphics
Soon after interactive systems became popular, computer

graphics found wide use in engineering. -First, two-dimensional plots were

14

used. Later, graphics were used to actually depict parts and assemblies.
Added capabilities such as hidden-line/surface removal, shading and
continous color-tone output produced realistic images [7].

Computer graphics helped users comprehend and interpret output
quickly. The engineer was able to generate plots, make conclusions on
product performance, adjust variables, and generate new plots for an
improved product, all in one session with the computer. Graphical output
was better able to communicate the resuits of engineering analysis to
those who were not specialists [16] (management, specialists in other
areas, less-skilled personnel). Figure 2.2 shows a sample graphical output
with hidden Tine removal.

After graphical output became accepted, special computer
hardware was developed: graphics tablets, light pens, mouses (mice?), and
track balls [17]. Graphical input simplified the creation of geometric data
and allowed user commands to be specified by pointing. The combination
of good interactive programming techniques and computer graphics
resulted in computer software that could be used by non-specialists [3],
because it was easy to input data and easy to understand the results.

The use of computer graphics motivated integration efforts on 2
case- by-case basis. Analysis programs were modified to output data in a
compatible format with general-purpose graphics programs [18]. There
was no standard for graphics data, rather each graphics program had its
own data format.

The proliferation of graphics software was matched by a
proliferation of graphics hardware. Initially, vector storage tubes

dominated the graphics terminal market. Later, as computer memory chips

15

became faster and less expensive, raster displays became the accepted
standard. As terminals became more sophisticated, functions that were
originally performed in software became hardware functions. Examples
include: drawing of graphics primitives such as circles and arcs; rotation

and transiation of entities; and solid fill of polygons.

Figure 2.2 Robot Work Cell

Each vendor developed his own protocol for using these functions.
Hardware functions reduced the input needed to produce a picture, but

made it difficult to write a program to interface with terminals from

16

different vendors. A standard was needed to simplify the use of different
terminals. One standard has been adopted and four others are under
consideration by the American National Standards Institute (ANSI) [19].
These standards are mostly used by graphics programmers to write device
drivers, and do not receive much publicity. However, the graphics standard
is one of the first standards to be accepted in computer software. The
development of Fortran-77 to standardize file manipulation and the use of
character strings is a similar process. These standards primarily effected
programmers. The computer user was not yet influenced by standards for

input or output.

Distributed Systems

The early nineteen eighties saw a declining interest in large,
centralized computers as smaller, local computers became popular.
Super-minicomputers such as Digital Equipment Corporation's VAX became
widely used in engineering analysis. The VAX generally provided a better
environment for interactive programs than a large mainframe. A group of
ten to fifty professionals was needed to economically justify a VAX. More
recenth? 16- and 32-bit microprocessor based workstations offer nearly
the computing power of a VAX for a single user [20,21] at a lower cost.
They are small enough to sit on a desk and can be justified by the needs of
two or three professionals. Within a few years, workstations costs are
projected to drop to the point where each engineer will have one.

At the same time, small computer systems that specialized in
design functions were developed using the latest graphics hardware.

These CAD systems were sold as a combination of -hardware and software.

17

They were refered to as "turnkey” systems, since their software made
them ready to use as delivered (just "turn the key”). The first systems
were based on 16-bit microprocessors and were used for two-dimensional
drafting. Later systems could manipulate full three-dimensional models
and used super-minicomputer hardware to improve response. Finife
element mesh and numerical control (NC) tape generation were added to

the basic drafting capabilities.

The Call for Integration

The progression from batch processing to current workstations
and CAD system technology caused an abrupt change in thinking upon the
introduction of CAD systems. Until then, only technical specialists had
been involved with computers in engineering. with CAD systems,
designers and draftspersons with forty to eighty hours of training became
heavy computer users. Supervisors who had been bewildered by computers
in the past now operated their own CAD systems. These non-speciaiists
soon became aware of the capabilities of the computer and desired to¢
share resources with the isolationists, the specialists. The new users
found that it was difficult to interact with the speciaiists’ resources.

Most different pieces of software would not work together
without custom interfaces, data was never in the "right” format (ro
standards), and nobody could see the big picture of computer utilization in
the design and manufacturing process. That is why Schaeffer [22] saic:

The current state of computer-aided engineering
can be represented as a set of unconnected processes. By

themselves, the individual areas such as finite element
analysis, geometric modeling, and drafting adequately

satisfy the local needs of engineering departments. But
these hardware and software bits and pieces communicate
data poorly between one another. In effect, the areas exist
merely as “Islands of Automation.” As a result, many
efforts in a CAE system are redundant, information transfer
is slow and often done on paper instead of electronically,
and productivity is not as high as it could be.

An Integrated Design Process

Many people could understand how the sharing of product definition
data throughout a company could improve productivity. Far fewer were
prepared to take the steps needed to integrate. A review of the typical
design process (see Figure 2.3) will illustrate some of the activities that
need to be integrated. The three boxes in the top half of the figure

represent design engineering activities. In the investigation stage various
concepts are explored, a concept is selected, and technical specifications

for the product are set. In the next stage an initial prototype is made that

hopefully meets performance specifications with the selected concept. A

INVESTI fATION

INITIAL E?OIQI!EE_.

FINAL R&D PROTOTYPE |

_ e e o e e e e o = o o o e o e o o] e e o e e e e o m e w e— m— w— e— w—

Manufacture Y
PRODUCTION PROTOTYPE
r

PILOT RUN

Figure 2.3 - A Typical Product Development Sequence

19

final research and development (R&D) prototype should demonstate product
feasibility, meeting economic requirements and using current technology.

The two boxes in the bottom half of the figure represent
manufacturing engineering activities. A production prototype is built as
manufacturing processes are selected and refined. The pilot run tests the
manufacturing process in a high volume environment.

In the optimal situation, data would easily move by computer, not
only from one step to the next, but freely from one end of the design cycle

to the other. For example, Potter[23] expresses a manufacturing viewpoint.

While most CAE systems have produced a savings
in two or three years, the most important benefit lies in
improving productivity by bringing the engineering process
closer to the factory floor. ...

Manufacturing is coming full circle. When the
first manufacturing was done in a cottage industry, the
designer was also the manufacturer, conceiving and then
fabricating products one at a time. Eventually
interchangability of parts was conceived, production was
separated into specialized functions, and thousands of
identical parts were produced at one time.

Today, production is much more batch oriented, and
although the designer and manufacturer will probably not
become one again, the functions are being drawn closer in
the movement towards an integrated manufacturing system.
Ironically, while the market demands a high degree of
product diversification, the need for increased productivity
and reduced costs is driving us towards more coherent
systems.

Figure 2.4 depicts a typical organizational grouping for design and
manufacturing functions in a large (over 1000 employee) company. The
dotted line indicates the separation between design and manufacturing.

Each group is composed of specialists and has limited interaction with the

20

other groups. Design and manufacturing groups seldom spend much time
together. In many companies their offices are in different buildings.
Thomas Allen of MIT (as cited in the book, /n Search of Excellence)
studied the effect of physical separation. His results [24] are shown in
Figure 2.5. The physical distance that separates design and manufacturing
activities may cause problems. However, appropriate use of the computer

may help. A Hewlett-Packard experience provides a good example.

@ ‘m’ umerical
@ Control
Manufacturing

Engineering
rocess
Planning

Figure 2.4 Engineering Organizational Grouping

Quality
Assurance

Test

Material

Reliability Handling

IR RN R R RN R R RN N R NN N R NN RN E TR NN NN

0.25
&
w020
=
.‘c;l-t
oW
> =g 015
=g =
o=
225
=FTw 0.0
oF -
x O -
a O d L]
0.05 4
. -
o] 1 1 1 i 1 A L 1 1

4] 10 20 30 40 50 60 70 80 30 100
SEPARATION DISTANCE — 55 (meters)

Figure 25 Effect of Location on Communication

21

Hewlett-Packard is primarily an electrical engineering company.
Some felt that mechanical engineers, who make up a small minority, did
not have the opportunity to interact with their peers. Seven mechanicai
engineers, each representing a different HP division, were given an
account on a computer information network. The network promoted
communication between the mechanical engineers, even though they were
scattered about the Western United States. They came to a consensus on
various topics and have made an impact on several corporate decisions, as
a handful of people among over seventy thousand emplioyees. Eiectronic
mail can bring people together who are physically far apart [25] Much

more will be possible when engineering data is shared as easily as mail.

Databases - The Centralized Solution

Hardware is already available that allows computers to talk to
each other. Proprietary networks ailow many heterogeneous systems (o
share data. Local area networks are becoming popular to tie personai
computers together. Relatively little has been done to develop software o
move, store, and reiate product data.

Dube and Johnson [26] outlined five basic points to consider in

developing a computer-assisted engineering data base:

I. Data management technigues should eliminate redundant data.
The geometric, process, classification data, etc. should be stered
only once.

2 The data integrity of the product must be maintained. Data

should be protected from theft and destruction by accidental

22

operator error, malicious acts, or hardware failure. Finkle [27]
covers this topic in some detail. This is a difficult problem
because various groups need access to product data during the
product design cycle. The privilege of changing data transfers
from one group to another as the cycle progresses. Felippa [28]
proposes that each group should have a local data base with
relatively free access. Interaction between local and global
data bases would be carefully controlled.

- 8 Users should be able to access data on two levels: by interactive
query and through a standard programming language (such as
Fortran and other high-level languages).

4 Data should be separated into different subgroups (views, layers,
etc.) to allow the user to selectively extract data.

S. Data should be independent of the application. This implies that
a data definition interfaces the data and any application. The
data definition would specify the structure and form of the data.

Navathe [29] mentions another very important point, relatability,
which is the ability to show relationships between different pieces of data.
The usefulness of a data base in engineering depends upon the richness of
the relationships that are maintained. The database format and organization
are called a schema [30]. Development of a comprehensive schema for
engineering design data is very difficult. Many man-years of effort were
spent developing schemas for CAD systems, even though they “only” treated

graphical data.

23

The Initial Graphics Exchange Standard (IGES) [S] was developed to
represent geometric, topological, and non-geometric product definition data.
It contains a wide variety of entities, such as: lines, arcs, surfaces, planes,
splines, ruled surfaces, etc. Even with its capabilities, much work is still
needed before a complete product definition could be stored. For example, a
tolerance specification is represented as a text entity. It needs to store the
relationship between the tolerance and its associated features so that the
data may be used by a tolerance analysis program. A wide variety of other
relationships would be needed for use by analysis programs currently in use

for product design.

CURRENT PROGRESS IN INTEGRATION

Little software is available that uses IGES other than turnkey CAD
systems. Systems that claim compatiblility to share data throughout
design, analysis, and manufacturing functions are primarily proprietary and
dependent on a specific collection of hardware [31]. The systems provide
interfaces to popular analysis codes such as Nastran and Ansys, but rarely
provide for data transfer to in-house codes.

It is not surprizing that many analysts dislike CAD/CAM
integration efforts. They do not want any association with the drafting
function. They are offended when a CAD/CAM system forces them to give up
analysis software that they havé used for years, because it is not
"supported.” Better results may be obtained with internal projects to
integrate in-house analysis software with turnkey CAD systems, as
demonstrated by Xerox (32].

However, most companies cannot afford to expend the resources

24

needed to create their own integration software. The Xerox success
reflected a major effort on the part of fifteen staff members, yet merely
demonstrated the feasibility of integrating CAD and CAM. it is much more
difficult to create techniques that will solve the integration probiem for
general engineering. A more dramatic example is provided by the Boeing
Corporation, with a 250 million dollar computer budget per year. They
created their own data base and began to write transiators to their CAD
systems and engineering analysis programs. The effort overwhelmed them,
budget notwithstanding. They decided to abandon their effort and support
national standards such as IGES.

Kennicott [33], who coauthored the IGES standard and continues
engineering database development full-time at General Electric, admits that
a complete product definition database is not yet available.

This document describes software that big or small companies
may use to move FEA data from one system to another. A computer
environment is developed for the new type of user who will operate an
engineering workstation in an integrated environment. The complete

integration solution is not offered here, but a start.

CHAPTER 3

TRANSFER OF FINITE ELEMENT DATA

Opening the Data Path

Finite element analysis (FEA) is data intensive. Development of
pre- and postprocessors to manage large amounts of data was needed before
this tool could be used extensively by industry. Powerful mesh generators
are available to help the engineer create finite element models of complex
structures. Mesh generators may be based on solid or wire-frame geometry
models, and may run on a specific CAD system or on a general-purpose
computer. A need common to all mesh generators is the ability to transfer
model data to both "custom” and "standard” finite element analysis codes.

Most mesh generators can create input data sets for popular FEA
codes, such at Nastran, Ansys, SAP, etc. The user may also need to transfer
data to specialized in-house FEA codes. Engineers could be more efficient if
finite element software supported both custom and standard FEA programs.

One solution would be to write translator software to convert
information from an input data set of a "standard” FEA code into a data set
for a specialized code. A disadvantage of this method is that information
not present in the standard input data would not be available for the
specialized code. An in-house code may require much custom data.

25

26

A more general solution would be to output all finite element
modeling information in a "neutral” format, a format that is not specific to
any FEA program. Separate software would be developed to reformat the
neutral data for specialized analysis codes. This approach requires a
neutral format that could meet the needs of a variety of FEA programs. A
neutral file acts as a database that contains finite element information for

a particular model. FEA database relationships are shown in Figure 3.1.

—) Material Property |

(Element }==+—) Geometric Property |

<« Load- Body Force |

— Constraint |

@—(—[Load- Concentrated |

L Y Transformation Matrix|

Figure 3.1 Finite Element Relationships

Neutral File Development

The Naval Weapons Center Computer-Aided Engineering Support
Office (CAESO) at China Lake began development of a neutral file in January
1983 [31] to meet their need to extract data from the ComputerVision (CV)
CADDS 4 system and create input data sets for Abaqus [6], an FEA program
that is not supported by the CADDS 4 mesh generator. Software to output
the prototype neutral file and a prototype reformatter were also developed

27

by CAESO. In April 1984 a meeting was held at Brigham Young University
(BYU) with representatives from various Navy laboratories to define the
first release of the neutral file [4] One objective of the BYU meeting was
to generalize the neutral file and reduce bias towards the CV data base. It
was decided that the neutral file should be a free format text file, as
explained below.

Each entity (node, element, etc.) begins on a new record (80
characters long) and is identified by a four-character keyword. An
identification (ID) number follows the keyword. The entities, their
keywords, and content are summarized in Table 3.1 (A detailed explanation
may be found in reference 4, enclosure 4). Data fields are separated by
commas, and each record is terminated with a semicolon (See Figure 3.2).

This format has the following advantages:

Table 3.1 - FEA Neutral File Entities

Type Key Content

Header HEAD Comment or titie card

Node NODE Transf. matrix #, coordinates, scalar

Element ELEM Name, mat'] #, geom prop #, node *'s

Material Property MATL Name, isotropic condition, reference
type, reference value, property values

Geometric Property PROP Name, property values

Load, Element ELOD Element #*'s

Load, Nodal NLOD Node *'s

Load, Harmonic HARM DOF, displacement value, node *'s

Constraint, Perm PCON DOF(s), displacement value, node *'s

Constraint, Multiple. MCON Dependent, independent node #'s, ratios

Constraint, Omitted DOF ODOF Degree of freedom omitted, node *'s
Constraint, Retained DOF RDOF Degree of freedom retained, node #*'s
Transformation Matrix TRAN Coordinate system type, matrix values

28

1. Neutral file is human-readable.
Changes may be made by hand using a standard text editor.

Information is not column dependent.

NN

Each record may occupy as many lines in the file as needed.

While node and element records have specific data assigned to
each field, the property cards contain an arbitrary set of values. A general
material property record is difficult to define because of the wide disparity
between material models in different FEA codes. Much data could be
required to handle the range of FEA problems from elastic-plastic models to
thermal stress calculations. The neutral format stores a set of real
numbers in an arbitrary order. The values are associated with specific
material property values (poisson's ratio, etc.) when an FEA input file is
created.

The element and nodal load records consist solely of a group of
elements or nodes, as shown in the Content section of Table 3.1. Additional
information is usually needed to complete the load information, depending
on the type of analysis (linear or nonlinear, static or dynamic, constant or
variable load history, etc.). Like the property records, additional
information is entered by the user to complete the load information when
the neutral data is reformatted to prepare an input set. As more experience
is gained with the neutral format, more information may be added to the

load cards.

29

NODE, 127,0,-.18370E2,0.,.10500E 1,0.;

NODE, 273,0,-.16214E2,-,77640E0,.97686E0,0.;

ELEM, 83,QUAD,0,0,260,259,112,113;

ELEM, 1,QUAD,0,0,148,273,126,127;

ELEM, 2,QUAD,0,0, 169, 189,273, 148;

NODE, 275,0,.39994E 1,-.37848E0,.29113E0,0,;

NODE, 108,0,.49734E1,0.,,25809E0,0.;

MATL, 3,STEEL,ISOTROPIC,TEMP, 100.,.37058E7,.14028E7,
0.,.37058E7,0.,.14028E7,.00772;

Figure 3.2 Sample Portion of Neutral File from CV

Producing the Neutral File

writers of computer-aided design and mesh generator software
are often reluctant to release information on their database structure
(considered proprietary). However, they generally offer a way to extract
data indirectly from the database. One method is to output a
general-purpose FEA data file (used by Patran [35]). This method has the
limitation that some FEA data may not be present in the general-purpose
file. The second method is to provide on-line access to the database through
vendor-supplied subroutines (used by CV). However, the second method
requires more software development to gain the flexibility of accessing the
database.

The Navy software uses CV subroutines to cycle through the
database to output all FEA data from the CADDS 4 database. The resuiting
neutral file is an unordered mixture of entities, as shown in Figure 3.2.
Neutral file records are not order-dependent, since each record contains a

keyword which identifies its type.

30

Reformatter Development

Once the neutral file is extracted from the mesh generator, the
next step is to reformat the data into an input file for a target FEA program.
A reformatter code, Rosetta.BYU, was developed at Brigham Young University
with an emphasis on portability and flexibility (documentation is found in
Appendix A). Portability results from writing structured code using ANSI
Fortran-77 [36] Flexibility is reflected by the support of three data
standards: IGES Version 2.0 [5], Movie.BYU [8], and the neutral file (See
Figure 3.3). The main options of Rosetta are summarized in Table 3.2.

The IGES Version 2.0 format includes node and element entities,
but not loads, constraints, or properties. The IGES FEM Subcommittee has
suggested formats for the missing entities through "Request For Change”
documents [36]. Rosetta uses the suggested IGES format for nodes and
elements.

Movie.BYU uses either a polygonal or solid representation of
objects. Both formats may be translated to an equivaient finite element
mesh. Support of Movie.BYU data allows mesh data in neutral or IGES format
to be converted to Movie format for display and verification. Movie utilities
may also be used to create mesh geometry.

A versatile data structure is the most important part of Rosetta.
Various data anomalies were considered as data structure concepts were
developed. One problem is that the records may not be input in order (as
shown in Figure 3.2), but FEA programs often require ordered data in their
input files. Another problem is that gaps may occur in entity numbering as
the result of mesh editing. FEA programs may not accept gaps in the entity

numbers.

Table 3.2 Main Options of Rosetta

Select process option (c,e,i,l,s,w,q):

¢ - Check for model completeness
b - optimize Bandwidth through node renumbering
m - check for Missing items
e - list Elements without material property
n - list Nodes not used
q - quit model check option
e - Edit the current model data
a - Add/delete items to node/element lists
h - Header information
n - Node data
e - Element data
¢ - Constraint data (p,m,o,r)
p - Property data (m,g)
1 - Load data (n.e)
t - Transformation matrix data
q - quit list/edit option
i - read in a different Input file
i - IGES version 2.0
n - Navy neutral file, version 1.0
m - Movie.byu geometry file
q - Quit execution of Rosetta
] - List the current model data
a - list All model data
n - Nodes
e - Elements
m - Material properties
g - Geometric properties
1 - Loads
¢ - Constraints
q - Quit list option
s - give Status of data storage
w - Write out the model to a file
a - Abaqus input data file
i - Iges version 2.0 format
m - Movie.byu polygonal format
n - Navy neutral file version 1.0
s - Sap iv input data file
q - Quit output option
q - Quit execution of Rosetta

31

32

Third, the relationship between quantities of one entitiy vs.
another varies widely, depending on the application. For example, a
complex, machined part might contain thousands of nodes and elements and
a single material property, while a cast part might have a different
material property for each element (properties dependent on cooling curve).
The data structure should adapt to either extreme. A custom data structure
has been developed for Rosetta to handle these problems and is described in
Appendix A.

Rosetta will support input and output of an arbitrary number of
data formats through subroutines that load or unioad records from data
files. Output subroutines not only reformat existing data, but also allow the
user to add specific information for a FEA program. A general purpose code
like Abaqus may have a dozen different material property cards that may be,
used, depending on the type of problem. The Abaqus output subroutine
allows the user to link values carried in the material property record of the
neutral file to the appropriate material property card. In this way the
neutral file stores only values needed for the particular problem, and the

user has the flexibility to use the values as needed.

CHAPTER 4

AN ENGINEERING WORKSTATION ENVIRONMENT

An engineering workstation is a stand-alone computer system
that gives the engineer personal control of the data processing power of a
dedicated minicomputer. Computer software aids have been developed for
engineering workstations in design and analysis, as well as general office
automation [37,38,39,40,41]. With the right workstation management
tools, the engineer's computing environment can be optimized to best use
available hardware and software. The engineer should be able to use
software for data and file management, communication, and analysis
without being a computer expert. The ideai environment uses software
that was purchased or developed in-house. Davinci.BYU software (see

Appendix B) has features of the ideal engineering environment (Figure 4.1).

Engineering
Workstation ged
Processing
B0~ (WO
Management

Figure 4.1 Davinci Software for Workstations
33

Davinc)

34

In the past, an engineer spent a great deal of time learning how to
use each program. Improved user interfaces will result in less emphasis
on computer literacy and more emphasis on technical proficiency. In the
future, the average engineer will use a wider variety of software and
become more of a generalist. The contrast between the general and
specialized approach is illustrated by two famous men, Leonardo Da Vinci
and Thomas Edison. Da Vinci was a "renaissance man” who worked
independently and found success in integrating his profound knowledge of
diverse fields (painting, sculpture, anatomy, hydraulics, aeronautics).
Edison, on the other hand, obtained success by training an army of
specialists to perform specific subsets of a project. Workstations allow
individual control of resources for more convenient data processing and
make possible increased integration of applications software. The
benefits of both the Da Vinci and Edison approach may be obtained by the

proper use of a well-managed workstation.

WORKSTATION ENVIRONMENT

The author assumes a workstation with the data processing
capabilities of a VAX-11/750, S0+ megabytes of mass storage, fully
supported ANSI Fortran-77, and muiti-tasking. Multi-tasking is the
ability to call or initiate one process from another. When the second
process is terminated, control returns to the initiating process.
Multi-tasking is not part of ANSI Fortran-77, but is a library function
callable from Fortran under the VMS and Unix operating systems [42,43].

DavinciBYU lets the engineer organize software by setting up

menus which classify programs by their function or application. When a

35

category, such as "Finite Element Analysis,” is selected from the menu,
Davinci displays the corresponding sub-menu. The sub-menu may contain a
list of more detailed sub-categories, such as "Mesh Generators”, "Post
Processers”, etc., or it may contain a list of the available computer
programs. If the user wishes to run a program, Davinci will execute it as a
secondary process, using the execution instruction previously stored in
Davinci's database. A set of user commands permits the engineer to move
quickly through the menus and execute programs or procedures. Using the
Davinci edit commands, the engineer can set up a software library by
creating new menus, adding new programs, and changing or deleting any

menu item. A summary of the Davinci commands is listed in Figure 4.2.

Select DAVINCI option: (m,i,x,e,*,q)

m- move through menus e- Edit menus, file data
#- move to menu number (#) m- edit Menus
u- move Up one menu level f- edit asingle data file
t- move to Top of menu structure c- edit data file Categories
f- find menu containing (name) 1- edit the Library title
g- Quit, return to main options r- Restore a program on-line

o- put aprogram Off-line

1- Information on menu items - g- Quit edit option
s- give Synopsis of menu item (*)
r- show References for item (#) #- select item number
m- display Menu structure execute program or moves to #*

f- list data File information
v- Verify data file info
X- eXecute a program
ITEM # - number of program to execute g- Quit DAVINCI program
(name) - program code name

s- enter your own System command
q- Quit execute option

Figure 42 Davinci Commands

36

In addition to the execution instruction (up to 75 characters),
other information may be stored for each program. A brief description of
up to ten lines (75 characters per line) may be used to describe the
purpose and capabilities of the program. Text containing references to
program documention and persons to contact for assistance may also be
stored in the same manner. A keyword of up to nine characters is
associated with each program. The engineer may use a keyword to execute
a program directly, without moving through the menus, or to quickly move
to the menu containing the corresponding program. The keyword is also
used to detect the use of the same program in different menus, in which
case both menus use the same program information.

The execution command is not limited to executing software, but
may also execute any system-level command. The user may choose to edit
or list a data file. On-line documentation may be included in Davinci by
setting up a menu of programs, each listing a file that contains a portion
of a user's manual. Figure 4.3 illustrates the use of Davinci to retrieve
on-line documention for the Movie.BYU graphics package [8]. Automatic
demonstrations can be added by running a program with input redirected
from a file. Redirection is a standard feature of Unix [44], and is also
available in the Squire.BYU library input routines (see Chapter 5). Figure

4.4 shows an automatic demonstration of analysis and graphics output.

Data File Management
A large number of data files will result from the many programs
used on a workstation. Davinci contains a data file management feature

that organizes the user's files. The user may define up to six categories

37

Description of DISPLAY commands

1. Basic commanas: DRAW, EXIT, FAST, HELP, SCOPe, YIEW

2 Movemodel: CENTer, DISTance, FIELd, RESEY, RESTors, ROTAte,
SAYE, SHIFt, TRANslsts

3. Change model: EXPLode, (MMUne, PARTS, PIVOL, SCALe, WARP

4 Linearawing (CONTour, DASH, DOTTed, FEATurs, NODE, POLYgon,
RECOrd, SHRInk

5. Basiccolor: COLOr, FLAT, FRiNge, LIGHL, SMOOth, UNIForm

6. Advanced color: ALIAs, DIFFuse, GLASS, HAZE, MULTiple, SHADow

Select DAYINCI option: (m,1,x,* q)

6 Advanced color: ALIAs, DIFFusa, GLASs, HAZE, MULTiple, SHADow
1, Info for ALIAs commanad (DALIA)
2. info for DIFFuse command (DDIFF)
3. info for GLASs command (DGLAS)
4. Info for HAZE command (DHAZE)
S. info for MULTipie command (DMULT)
6. info for SHADow command (DSHAD)

Select DAYINC! option: (m,1x,=, :
. o (m.1x,%.0) The following command 15 used to run program: DALIA
more /users/terril/Davinct/Dmavman/alias.mav

ALIAs

The ALIAs command allows the user to toggle the anti-aliasing option
off and on. This command is a switch. ‘When given the first time, the
anti-alissing option 13 enabled (CANT|-ALIASING ENABLED>). When qiven

Hit <RETURN> to continue
<return>
Select DAYINC! option: (m,1,x,* a)

Figure 43 On-Line Documentation

HP 9000 Brighem Young University Software Library
1. Movie.8YU Graphics Package
2. OPTDES.BYU Design Optimization Package
3. Finits Element Modeling
-M M 1 <MOVIE SYSTEM DISPLAY>
4, Lumped-Mass Yibration/Modal Analysis (READ GEOM FILE>

5. State-Space Control Systems Tools (READ: | PARTS; 66 COORDINATES, 55 ELEMENTS)

Select DAYINC! option: (m,i.x,* q)
1 ==
Maovie.BYU Graphics Packege

| Movie.BYU Softwars

2. Documentation

3. Demas

The following command is usad 1o run program: WING2
fusers/terr1l/Dmovie/display «/users/terr1]/Dmovie/ Drobot/answing2

Select DAYINCI option: (m i x,*.q)
3
Demos !
1 Clear the screen of-text and grapnics (CLEAR)
2. Multi-view (COMPOSE) output with UTILITY primitives (EXPS)
3. Line arawing of the robot work ceil (ROBOTL)
4 Continuous color picture of robot work cell, DISPLAY (ROBOT)

S. Multi-view (COMPOSE) output, clipping by SECTION (SECOUT) »

5. Color Temperatura fr1nge oulput of Coyote.BYU (COTOUT) Hit <RETURN> to continue

7 Moe shape of triangular wing from SAP IV anafysis (WING) areturny

8. Line Orawing of Made Shape of Wing Using SAP IY (WING2) Select DAVING! option: (m,i1.x,%® q)

Select DAYINC! option: (m,1.x,* q)
B

Figure 44 Software Demonstration

38

to classify data files. For example, if an engineer used the sample
categories "Analysis Pregram,” "Project,” and "Part” given above, then
Davinci would prompt for the corresponding analysis program, project
number and part number for each data file that is created. This
information is organized in a simple relational data base, along with three
other categories that are automatically defined: 1) file name, 2) file size,
and 3) time of creation. The user may obtain selective lists of data files
that fall within a specified range of one or several categories. For
example, the user could request a list of data files used with analysis
program Nastran; dealing with part XYZ, which were created during
October. As files are backed up and removed from the system, the user can
retain the data file information and store the location of each backed up
file.

Two subsets of the DavinciBYU program, SentinelBYU and
Gateway.BYU, were created to provide advantages of the workstation
environment to multi-user computing environment. Classification of data
files is not included in these two programs. The library manager uses
Sentinel to set up the menu information for the software in the library.
Each user executes Gateway (without edit capabilities) to efficiently use
and share the software. The function of the three programs is illustrated

in Figure 45,

INDUSTRY APPLICATION
The Davinci software was used to manage BYU software used on
an HP9000 engineering workstation. This application was a cooperative

effort between the author and a Hewlett-Packard employee at BYU, who

39

was given the charter to develop ways for HP to use BYU-developed
software. This software is available to HP as a member of BYU's Alliance

With Industry program {45].

User-1

Gateway — ,{Prcgramsl

- o Operating

On-line
=ystem Document,

System Unix/VMS

Manager

Multiple Users

RengE User/,m Programs|
User/ Operating

System Davinci System On-line
Manager Unix/VvMS Document.
File Data

i

|

i

Demos

Figure 45 Functional Diagram of Davinci Software

DavinciBYU was recognized as an ideal tool for organizing
software on HP workstations. As the Davinci program was used for this
‘real world" task, it became more polished than is typical for university
software. Through testing Davinci with several new users, the clarity of
prompts and program information was improved.

At a recent meeting of HP's corporate Mechanical Engineering
Design Council, Davinci was presented to several managers from locations
throughout HP. The managers were enthusiastic about its capabilities to:
1) help engineers who are unfamiliar with Unix use applications software,
and 2) allow software upgrades and maintenance from a remote location.

HP CAE managers may obtain software from their BYU liaison by

requesting a tape, which is then loaded into a dedicated directory on their

40

9000 system. Once loaded, the BYU programs, manuals, demos, bulletin
boards, etc. are immediately available within the Davinci menu structure
(see Figures 4.3, 44). As BYU software is developed and refined, periodic
updates to the Davinci database will be sent to the HP managers. Inciuded
in the Davinci information are the latest tips on using BYU software, with
HP-specific instructions. By standardizing the access to programs and
support (via the Davinci programs), companies such as HP can begin using
BYU software quickly and with much less training than would otherwise be

required.

CHAPTER 5

DEVELOPING ENGINEERING SOFTWARE

The success of engineering software, like any other product,
depends on ease of use, reliability, ease of upkeep, and market demand.
These factors apply to software developed for in-house use, as well as
commercial codes. Good software is the result of a well-thought
development procedure, style and structure rules, complete documentation
guidelines, and quality software development tools. A friendly user
interface is also essential for the software to be fully accepted. This
chapter describes techniques that help the programmer create good
software the first time. These techniques were used to develop the
Rosetta and Davinci software.

A software development procedure that can help the programmer
make best use of resources is given in Table 5.1. Planning, specification,
and designs steps should be performed before any program coding is done.
Once the program is written, many evaluation and implementation steps
are also needed. Unfortunately, many programmers concentrate too much
on the coding step, which can result in an unsupportable program that
solves a problem that nobody cares about. The planning phase can
eliminate unjustified software projects and prioritize worthy projects.

4]

42

TABLE 5.1 - Software Development Process

PLANNING PHASE
1. Find out what the user wants as output.
2. Findout what the user has available for input.
3. Bracket a range of computer literacy for the expected users.
4. Estimate the expected benefits of the software, in terms of dollars

and/or man-hours saved.
Estimate the software development time and cost.
Confer with management, decide if benefits justify the cost.

oo

SPECIFICATION PHASE
7. Firm the exact content and layout of the input and output.
8. Confer with the user, make sure he agrees with the layout.
9. Establish what interaction is needed with other software
or engineering databases.
10. Write adescription of the calculations, theories, limitations and
assumptions used in the software.
11. Establish the overall flow of the program.

DESIGN PHASE
12. Organize software into subroutines that perform adistinct function.
13. Detail the data structure for internal arrays and external files.
14. Diagram the flow of data among all the subroutines.
15. Check if existing subroutines may be used.
16. Write comment headers for the main module and each routine.

CODING PHASE
17. Write the actual FORTRAN statements. At the same time
include numerous in-line comments to explain the logic.
18. Let another programmer review the code for logic errors and
evaluate understandability.

EVALUATION PHASE
19. Compile the program and correct compiler errors.
20. Test the program with a complete set of sample problems.
21. Check that the software meets the requesting user's expectation.
22. Ask acasual (occasional) computer user to run the program.
Fix any feature that may be confusing.

IMPLEMENTATION PHASE
23. Completely document the software. Include a user's quide
that summarizes input and output, a sample execution of the
program, and a program listing.
24. Move the executable file('s) to a user library areaon disk.
25. Backup the source code and test data to a protected media.

43

The basic parts of software documentation are given in Table 5.2.
Good documentation is needed to help users and programmers work with
software. Since users and programmers need different information, it is
best to divide documentation into two sections: user’'s and programmer’s
guides. This outline is illustrated in the Davinci and Rosetta documents,
which are contained in Appendices A and B.

The quality of the user interface determines whether or not
computer software is used by practicing engineers. However, the
importance of the user interface is often overiooked in engineering
software, because the engineer/programmer prefers to work with technical
aspects of software. User interface development would be less painful if,
the engineer/programmer had interface utility routines available, rather
than writing each interface from scratch. Squire.BYU, a general library of
routines, meets this need (see documentation in Appendix C). [t can be used
to create a good user interface with relatively littie effort from the

programmer. A good interface possesses the following qualities:

TABLE 5.2 - Sections of Software Documentation

USER'S GUIDE INFORMATION PROGRAMMER INFORMATION
|. Brief program description 1. Program description
2. Sample output, input a) Theory and equations
3. Menu flow (optional) b) Program flow
4. Operating instructions c) Library, external routines
5. Input sheet (optional) 2. Program listings

3. Test and verification
4. Record log of changes

44

Accomodates both new and experienced users. The challenge is to
permit the new user to get additional information when necessary,
without boring the experienced user with long prompts. The use of
three levels of prompts is adequate for most situations. The first
level is terse for the experienced user. The second level is a fairly
complete description and the third level suggests a response.
Figure 5.1 shows a sample set of prompts for a program input. The
user can move down a level by hitting the return key. A good user
interface also lets the user buffer his input. Multiple responses
may be given at one time, by placing them on a single input line,
separated by spaces or commas. This allows the expert user to
answer ahead in the software and bypass unneeded prompts.
Provides consistent input procedures. Today's engineer may use
many software packages. A good way to achieve consistency in

the user interface is to use the same input/editing utility library
in each program. A big problems with utility libraries is getting
programmers to use them. Programmers often resist libraries,
because they were "not invented here." A good user interface
should appeal to both the user and programmer. Most Squire.BYU
routines are used by adding a call statement to the program and
supplying an auxiliary subroutine containing input prompts. The
routines handle crash-proof error recovery and input buffering.
Provides consistent editing procedures. In Squire.BYU, a selective
data editing technique is used, where each data item is associated
with an item number. Various data items are displayed on the

screen simultaneously. The user selects an edit operation (such as

45

change, delete or insert), then identifies the item to be edited by
number and enters the new value or verification for a delete. This
method emulates full-screen editing, but is much less machine-
dependent. A machine-dependent method for clearing the terminal
screen is needed for repainting the new values after editing, but no
cursor control is needed. Command buffering makes this editing
procedure fast and easy to use. Each edit operation requires a cail
to one of four general Squire editing subroutines, and an auxiliary
subroutine to arrange the data. The programmer has the flexibility
to arrange the data according to the application, and the Squire
routines handle the mechanics of editing.

4 Runs consistently on different computer hardware. The engineer
may have to use a mainframe to solve difficuit analysis probiems.
A portable user interface could be used with mainframe computers
or workstations, providing a consistent environment for the user.
As computer hardware advances are made, portability is crucial as
software is moved to smailer machines [9].

2. Encourages a flexible program structure. Software that forces the
user to follow a set path of operation may stifle user creativity
and cause resentment [46]. The user should be able to select
options as desired to operate on his data. Squire.BYU routines
simplify the use of menus or command words for option selection

and permit moving up and down in the program's menu structure.

The Squire library can contribute greatly to the efficiency of the

user and programmer. The engineer can better use software that prompts

46

according to need, and flexibility encourages creativity. The programmer
can develop software more efficiently because more time can be spent on
developing good prompts, instead of on input technigues. Most engineering
programmers prefer to work with the technical aspects of a problem rather
than user interfaces. With Squire, the software naturally develops with a
good user interface.

The sample executions contained in the Davinci and Rosetta user
guides (Appendices A,B) are good examples of Squire functions. The author's
experience with Squire suggests that users can best control programs that
are a collection of menus, where options are selected by letter. The use of a
single letter reduces the number of keystrokes, and association between the
letter and a keyword in the command helps the user associate ietters and
commands. Each menu should have from three to ten options. Where there

are two options, a yes/no question should be used with function QYESNO.

Select DAVINCI option: (m,i,x,e,*,q)

m - Move through menus
i = Information on menu items
X - eXecute a program by menu item
number or name
e - Edit menus, or library title
* - select item * (execute program,
OR moves to category)
q - Quit Davinci program
Why not enter: m to Move through

menus. NO further help!

Figure 5.1 Sample Multi-Level Prompts

47

In a good input procedure, each piece of data is requested
individually. The use of muiti-level prompts can explain what data is
needed and any rules that may apply (data must be greater than zero, whole
number, etc). Error traps can detect invalid data and ask the user to reenter
the data.

After a reasonable number of values has been input (5-20 items),
an editing routine should be used to allow the user to review his input
before continuing. The same edit procedure should be used to make
subsequent changes to the data. The enterprising programmer may wonder
why input isn't handied directly with the editing routines, thereby saving
the work of writing an input procedure. The edit routines do a poor job of
input because they cannot make individualized suggestions for each piece of
data. Explanatory text is limited to a few sentences for the entire set of
data. Editing is more effective after the user has gone through a previous
input procedure which answered any questions about the data. An editing

routine may be used as a starting point with a group of default values.

CHAPTER 6

A SAMPLE PROBLEM

A sample problem was needed that could illustrate the use of
Rosetta and Davinci software (using the Squire user interface library) for
integrated finite element modeling. Geometry data would be generated on a
Computervision CADDS4 system, and subsequent data preparation and FE
analysis would be done on an HP9000 workstation. This process is
described in detail in this chapter, including unforseen problems and their
solutions. Such details should be of use to future workers in this area.

A free-vibration analysis of a disc drive recording head was
selected to test the data structure concepts of Rosetta. This sample
problem has sufficient complexity to evaluate the performance of Rosetta
under realistic conditions. Figure 6.1 presents the head as displayed by
Movie.BYU. This head is used on Winchester disc drives, and consists of
three major parts: a stainless steel sheet metal "suspension” and "flexure”
(spot welded together), and a ferrite "slider”. The flexure produces a ten
gram preload on the slider so it "flies” at the proper height (10 pin.) over
the disc. The actual recording device is located on the slider. Positioning

this head represents a problem in servo control of a flexibie structure.

48

49

Figure 6.1 - Disc Drive Head

The disk drive head analysis was chosen as a sample problem because:

Modeling the assembly is a significant problem of geometric
construction and mesh generation. Three separate parts must be
modeled: suspension, that necks down by factor of four from one
end to the other; flexure, where two narrow strips require
smaller elements than needed elsewhere in the model; and slider.
It is an opportunity to use Movie.BYU's graphics capability to
augment engineering analysis. In a high-performance servo
system an understanding of system dynamics is crucial. Graphics
can help the engineer understand vibration analysis output.
Computer graphics and Rosetta's data integration concepts were
of interest to Hewlett-Packard, a participant in BYU's Alliance
With Industry Program [10]. They supplied part dimensions,
material characteristics, and modeling tips. The data transfer
from CV to SAP IV to Movie was of interest to China Lake.

50

Model Generation

A wire frame model was generated using the CV CADDS 4
software. Those who participated in the CV work on the sample problem
had less than 40 hours of experience with CV. As a result, the model
generation that was supposed to be trivial was not. (Somehow it is
always an intimidating experience for novices to confront software with a
user's manual of over 1000 pages). Appendix D contains a three page
reference of the CV commands needed to generate a basic model.

The first step of the modeling process was to generate a wire
frame model, and then subdivide the model into flat regions. The
generation of plate elements for each region was a more time consuming
process. Variable node spacing was needed on the main part to preserve a
good aspect ratio in the elements as the part narrowed. The CV software
did not support automatic meshing with variably-spaced nodes.
Consequently the nodes had to be created line by line and the elements
generated by hand.

The first and second parts are connected with four spot welds,
which appear as irregularities on the surface of the suspension shown in
Figure 6.1. The spot welds were modeled in the mesh by sharing nodes
between the two parts. It was necessary to move nodes on the parts in
order to align them at the weld points. Uneven spacing in the mesh reflect
adjustment in node locations. Careful use of construction planes was
needed to prevent misplacement of nodes. The final mesh consisted of 555
nodes and 456 elements (see Figure 6.2). Bends in the outline of the
flexure where straight lines are expected are the result of the 512

resolution used in calculating node locations in Movie.

S1

slider

Figure 6.2 - Disc Drive Head Finite Element Mesh (Exploded View)

Neutral File Generation and Transfer

A neutral file was created for the model and written to a tape.
The file was transferred to a VAX-11/750 and downloaded electronically
through a data switch to an HP9000 Series S00 workstation. The neutral
file was read into the Rosetta data structure.

One result from the “iterative® method of mesh generation was
many gaps in the numbering of the mesh. The 555 nodes were numbered
from 107 to 1079. Rosetta was used to compress the node numbering such
that the nodes were numbered from 1 to S55. The compression of nodes
executed so quickly that there was concern that nothing happened. A
Movie.BYU data file was output, and the mesh was displayed and checked
for errors. An inspection of the data revealed that all of the entities had
been renumbered correctly. The program management of Davinci made it

easy to switch between software during the modeling process.

52

It was necessary to return to the CV to rearrange the data, since
the original data organization had prevented the separation of the model
into parts for selective viewing. Movie.BYU requires consecutive
numbering of the elements (or polygons) in a part. This was not the case
in the symmetric model of the head, where one-half of each part had been
constructed, then mirror-copied to obtain the final model. Back at the CV,
a separate file was created for part 1, and another for parts 2 and 3. Each
file was transferred to the HP workstation, and then compressed and
rewritten in the neutral format using Rosetta. The node and element
numbers in the second file were incremented by 400, and then the
compressed files were merged. The new combined file was recompressed.
The slider was separated from the flexure by hand, since it consisted of
only a dozen elements.

SAP 1V was selected to perform the analysis because it was the
only FEA program available on BYU's HP900O. At this point a major
obstacle was noted. The bandwidth [47] of the model was too large for
SAP |V due to the sharing of nodes at the weld points, and the mirror-copy
mesh generation technique. A low bandwidth is crucial in executing SAP
IV. The CADDS 4 software does not contain a bandwidth optimizer. Some
bandwidth renumbering software was available on BYU's VAX computers,
but would not handie the transition between parts through the weld points.

The quickest solution was to renumber the nodes by hand. This
tedious experience was simplified somewhat by using Rosetta's
compression feature. An option was added to Rosetta that would input a
list of the old and new node numbers. The node directory array was

updated, and the node numbers were modified in the element records.

53

The SAP IV Analysis

Once the mesh geometry was finalized, Rosetta was used to add
contraints, geometric properties, and material properties. A subroutine
was developed for Rosetta to produce a SAP IV input data set. One unusual
aspect of SAP 1V input data is that the coordinates and contraints for each
node are combined on the same line. It was a simple matter to work with
the data structure to output coordinate and constraint information
together. Bookkeeping concerns for the input data set were eliminated
because Rosetta output the data in the correct format. Placing the data in
the correct columns, etc. may be difficult when a SAP IV input data set is
created by hand.

The output subroutine may also query the engineer for additional
information to be added to the input file of the FEA program (such as
solution specifications, time limits, error tolerances, etc.) For example,
additional card images were added to the SAP IV input file to select the
free vibration analysis option, and request the first six mode shapes.

The version of SAP IV on BYU's HP9000 had been modified to
create a Movie.BYU geometry file for the model and a displacement file for
each mode shape. The SAP |V results agreed well with the analysis done
previously at Hewlett-Packard. The small differences that were noted
were attributed to differences in the elements available in the FEA
programs used in the two locations.

Figure 6.3 shows the extreme and equilibrium positions of a
torsional mode of vibration at 2100 Hz for the disc drive head assembly.
The slider has no torsional motion due to the rigid air bearing that
develops between the head and the spinning disc (3000 rpm). It is

54

important to remember that a free vibration analyisis outputs re/af/ve
displacements, and absolute deflections are not known. The displacements

are magnified in Movie.BYU to make each mode shape more understandable.

Figure 6.3 Oblique View of Torsional Mode

A front view of the torsional mode is shown in Figure 6.4. An
arrow has been added to emphasize the side-to-side error in location due
to vibration. The solid geometry of the slider was modeled with plate
elements. The nodes in the slider are constrained in Z-translation (Z-axis
is perpendicular to the disc surface), and rotation about the X- and Y-axes
to model the air bearing. This allows the sparse use of plate elements to

model this part.

55

Figure 6.4 - Front View of Torsional Mode

A movie was made that animates four vibration sequences
selected from the mode shapes. A computer-controlled movie camera was
used continuously for 24 hours to film some 1800 frames, one at a time.

This sample problem has successfully demonstrated the Rosetta
and Davinci software. These programs did not eliminate all of the
problems that may occur in finite element modeling, but they did allow
more attention to be focused on technical problems, rather than

bookkeeping or data transfer problems.

CHAPTER 7

DISCUSSION AND CONCLUSIONS

The objective of this research was to solve specific problems in
finite element data transfer and software integration, and develop an
engineering workstation environment. Both specific contributions in
finite element modeling and general methods of developing engineering

software have resuited from these activities.

FEA Data Transfer

The Rosetta software provides a unique solution to the problem
of data transfer between mesh generators and FEA programs. The finite
element modeling process was simplified by linking the CV modeiing and
mesh generation capabilities with the analysis capability of the HPS000
and the graphics aids of Movie.BYU. As FEA tools becomes easier to use,
they will become more widely applied in the engineering community.
However, as experience has shown, efforts to simplify data transfer and
"bookkeeping” tasks do not remove the need for the engineer's technical
competence and judgement, but allow him to concentrate more time on
modeling skills and design.

The development of a neutral file format in conjunction with the
Navy provided a solid base for software development. The support of the

56

37

IGES standard and Movie.BYU added additional fiexibility, allowing existing
software to be used interchangeably. The use of Movie.BYU software to
view the model as changes were made was invaluable. The use of Davinci
to manage FEA tools improved the efficiency of the modeling process.

The Rosetta data structure worked well. A variety of problems
were encountered along the path from CV model generation to SAP iV
output. The flexibility of Rosetta's data structure helped soive these
probiems. Data structure operations were performed with acceptable

response time for interactive use.

Engineering Workstation Environment

Although various futurists have predicted the time when the
computer would greatly improve engineering productivity, advances to
date have been more an increase in technical quality than productivity.
Great strides have been taken to develop good engineering design and
analysis software, but little work had been done to link these tools
together. Much time is lost as a resuit.

Davinci.BYU creates an engineering workstation environment
that the engineer may tailor to meet his individual needs. In addition to
organizing engineering software, Davinci organizes data files in a simpie
relational data base.

Davinci provides a layer between the engineer and the computer
operating system. The engineer's interaction with the computer may be
simplified by storing frequently used system commands and procecures in
the menu, which can be later invoked with a single character.
Muiti-tasking allows the user to execute other programs selectively from

Davinci. These capabilities can improve engineer productivity.

o8

The author found that the Davinci is not only a good tool for
running application software, but also for developing new software.
Software development tools can be organized and related applications can
be easily accessed, without losing access to system functions such as

editing.

Engineering Software Development

The Rosetta and Davinci software demonstrate a new styie of
engineering software. This software can be used without frequent
reference to a manual, and gives the user the flexibility to be creative.
More user and programmer time can be spent on technical issues, because
utility routines help the programmer provide meaningful assistance to the
user through muitipie-level prompts for each piece of input. Edit routines
help the user conveniently alter data. These features are provided by the
Squire.BYU library, a general purpose set of routines written in
Fortran-77. The Squire library could be used for the user interface of any
Fortran program. it can help programmers be more efficient and spare

much user frustration.

Future Work

Several participants in BYU's Alliance With industry program are
interested in the neutral format. Their input will heip refine the format
and identify additional options to be added to Rosetta. The use of this
software with a wider variety of sample probiems can petter gage the
effectiveness of the integration process.

Links should be established to other CAD systems and mesn

generators by adding the capability to output a neutral or iGES file. The

59

ability to move finite element data to CAD systems would give the
engineer more flexibility.

For example, each data field has a certain purpose and content
within the node and element records. This is not the case with the
constraint, load, and property records. Currently, the output subroutine
for each FEA code must recognize the meaning of the various values as
they were entered in Rosetta or the mesh generator. Some standardization
is needed in the values stored in the constraint, load, and property records.

A new neutral file entity to define parts or regions in the
neutral file would be helpful. Complex modeis often need to be be
subdivided into separate parts. The part card could have the format:

PART, ID #*, Element #1, Element #2, Element *3, .. .,

Future FEA integration research at BYU will examine 2
combination of Movie.BYU, Rosetta.BYU, and mesh generator software to
form a general package for pre- and postprocessing finite element data.

Terril Hurst of Hewlett-Packard is using the Davinci program fo
support computer tools in mechanical engineering within the corporation.
HP feedback will be used to further enhance the software.

As the |GES standard becomes more complete for finite element
data, it can more fully emulate the neutral file functions. At present, the
neutral file is a more compact and concise method of storing FE data. The
IGES standard can relate FE data with wire frame and surface geometry.
The neutral file may change in this direction. Interaction between these

two data standards wouid be beneficial.

REFERENCES

Mufti, A. A, and Jaegger, L. G., "Computer-Aided Engineering Presents
Challange,” £ngineering Journal, September 1982, pp. 8-11.

Acker, D. D, "Productivity: A Continuing Management Challange,”
American Society of Mechanical Engineers, Paper No. 83-WA/Mgt-1.
Fielding, T. M., and Dedong, H. J., "Friendly FEA Sends Ripples Through a
Corporation,” Computer-Aided Engineering July/August 1983,

pp. 62-69.

Burchard, R., "CAEDOS Neutral File meeting minutes,” Department of
the Navy, Naval Weapons Center, China Lake, California, April 1984
Smith, B. M., et al., /nitial Graphics é‘)rmange Specification
(/1GES) - Version 2.0, National Bureau of Standards, Report No.
NBSIR 82-2631 (AF), February 1983.

"ABAQUS User's Manual, Version 4, Copyright 1982, Hibbitt, Karlsson,
and Sorensen, July 1982.

Bathe, K., Wilson, E. L., Peterson, F. E., SAP /V - A Structural
Analysis Program ror Static and Dynamic Response of Linear
Systems, University of California, Report No. EERC 73-11, June

1973, Revised April 1974

60

10.

.

54

14,

16.

V7.

61

Christiansen, H. N., and Stephenson, M. B., "Movie.BYU-A Computer
Graphics Software System," Journal or the Technical Councils of
ASCE, Vol.5, No. TCI, April 1979, pp. 3-12.

Hurst, T. N., and Ross, B. A, "Fortran That Travels: Programming for
Portability,” Computers in Mechanical Engineéering, November
1984, pp. 25-27.

Dargie, P. P., Parmeshwar, K., and Wilson, W. R. D., "MAPS-1:
Computer-Aided Design System for Preliminary Material and
Manufacturing Process Selection,” Journal of Mechanical Design,
January 1982, pp. 126-136.

Toffler, A, 7he Third Wave New York: William Morrow and
Company, Inc., 1980, p. 66.

Chase, M. A, and Dawson, G. A., "An End to the Guesstimate in
Mechanical Design,” Computer-Aided Engineering, July/August
1983, pp. 22-30.

werner, F. D., "Equation Solver for Engineers,” Computers in
IMechanical Engineering November 1983, pp. 53-59.

Seireg, A. A, "The Growth of Automation Demands a Grasp of the
Whole,” Computers in Mechanical Engineering, Sept. 1983, p. 2.
Ross, B. A, and Chase, K. W., "Computer-Aided Analysis of Stiffness
Sensitive Linkages in Multiple Positions,” Society of Automotive
Engineers Paper No. 821078, 1982

Fong, H. H,, “Interactive Graphics and Commercial Finite Element
Codes,” Mechanical Engineering, June 1984, pp. 18-25.

Krose, J. K., "Selecting a Graphic Input Device for CAD/CAM," Machine
Design, October 6, 1983, pp. 75-80.

18.

19.

20.

21,

22.

23

24,

25.

26.

.

28.

62

Ross, B. A, and Uirich, R. D., "Applying 2-D Finite Element Analysis to
Heat Transfer Problems,” Computers in Mechanical Engineering,
March 1984, pp. 16-19.

Panasuk, C., "Software Standards Will Usher in the Age of Graphics, "
Electronic Design, July 12, 1984, pp. 94-106.

Borrell, J,, "Engineering Workstations Meet Demands for Individual
Design Needs,” D/gital Design, December 1983, pp. 87-92.

Zecher, J. E., et al., "Engineering Workstations Meet Demands for
Individual Design Needs,” Mechanical Engineering November 1983,
pp. S0-61.

Schaeffer, H., "Putting the Pieces Together for CAE," Computer-
Arded Engineering March/April 1984, p. 112.

Potter, R. J., "Data Processing in Blue Jeans,” Computer, March 1983,
pp. 73-77.

Peters, T. J., and Waterman, R. W. Jr., /n Search of Excellence New
York: Warner Books, 1982, p. 221.

ME Staff, "Pat Hanratty Speaks Out on Interactive Graphics,”
Mechanical Engineering November 1983, pp. 50-61.

Dube, R. P., and Johnson, H. R., "Computer-Assisted Enginering Data
Base,” American Society of Mechanical Engineers, Paper No.
83-WA/Aero-11.

Finkel, J. 1., " Building a Wall Around an Engineering Data Base,"
Computer-Aided Engineering March/April 1984, pp. 76-82.
Felippa, Carlos A, "Database Management in Scientific Computing-I.

General Description,” Computers and Structures, V.10, pp. 53-61.

29.

30.

e

32.

33.

34

33.

36.

37.

38.

39.

63

Navathe, S. B., "Data Base Management of Computer-Aided-Design
Data,” Data Base Implementation and Applications, A/CAE
Symposium Series, No. 231, Vol 79.

Dube, R. P, and Smith, M. R,, "Managing Geometric Information with a
Database Management System,” /E££ Computer-Graphics and
Applications, October 1983, pp. 57-62.

Christman, A. M., "The Coupling of CAD and CAM,” Computers in
Mechanical Engineering September 1983, pp. 26-29.

Affuso, T. and Sevak, N., "Integration Through Translation: The
CAD/CAM Pilot Probe at Xerox,” Computers in Mechanical
Engineering September 1983, pp. 14-24.

Interview with Philip Kennicot, General Electric Corporate Research
and Development Center, Schenectady, New York, June 12, 1984
Second Annual CAEP Users Meeting, Naval Weapons Center,
China Lake California, January 1984

PDA/Patran-G User's Guirde, PDA Engineering, Santa Ana,
California, 1980, pp. 18.1-18.28.

IGES FEM Subcommittee, /GES Regquest rfor Change */35, /64,
247, drafts obtained from Bob Ivey, subcommittee chairman.
Radisich, M., "Taking the Drudgery Out of Engineering,” Computeér-
Arded Engineering March/April 1984, pp. 42-47.

Hirsch, A, "Toolkit Extends the Benefits of Lisp-Based Computer
to Fortran Programming,” £/ectronic Design,May 31, 1984,

pp: 193-202.

Borrel, J.; "Engineering Workstations Meet Demands for Individual

Design Needs," J/g/tal Design, December 1983, pp. 87-92.

41.

42.

43.

45,

47.

64

Villapiano, G., "Slow in Coming, A Full Compiement of Software for
Software Design on Workstations is Not Yet Here, But Many of the
Pieces Now Exist and Are Up and Running,” £/ectronic Design,

May 31, 1984, pp. 110-126.

Collett, R, "Trends and Developments in Engineering Workstations,”
Digital Design, October 1984, pp. 54-58.

Digital Equipment Corporation, VAX-// Run-Time Library User's
Gu/ide, Maynard, Massachusetts, April 1982, p. 5-10.

Kernighan, B. W., and Ritchie, D. M., 7he C Programming [anguage,
Bell Telephone Laboratories, Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1978, p. 157.

Waite, M, et al., UN/X Primer Plus, Howard W. Sams & Co., Inc,,
Indianapolis, Indiana, 1983, pp. 250-254.

Benzley, S, and Chase, K., "Computer-Aided Engineering, Design, and
Manufacturing at Brigham Young University,” Proceedings, NCGA
Annual Meeting, Anaheim, California, May 1984.

Smith, C. C, et al,, "Mechanical Systems Applications of Real-time
Computer Graphics,” Proceedings, NSF Study of Supercomputers in
Mechanical Systems Research, Lawrence Livermore Laboratory,
Livermore, California, September 1984.

Reiger, N. F., and Steele, J. M., "The Basics of Finite Element Modeling:
A Plain Language Guide for Designers,” Machine Design, April 9,
1984, pp. 165-170.

APPENDIX A

ROSETTA DOCUMENTATION

63

66

Rosetta.BYU

User and Programmer Guide

Brant A. Ross
College of Engineering
Brigham Young University
Provo, Utah 84602

Rosetta. r:D

Neither Brigham Young University nor its employees makes any warranty
expressed or implied, or assumes any legal responsibility for the accuracy,
completeness or usefulness of this computer program or its associated
documentation. Readers are reminded that the information and ideas
contained in this document are the property of Brigham Young University
and may not be used without permission.

TABLE OF CONTENTS

USER'S GUIDE INFORMATION

Program Description.............
Sample Qutput
Rosetta.BYU Sample Execution

PROGRAMMER INFORMATION
Data Standards o
Rosetta Data Structure
Adding Input/Output Subroutines. .
Element Type DataBase. ., . v son s

81

.. 84
.90

67

68

User's Guide Information

PROGRAM DESCRIPTION -

RosettaBYU is a computer program written in Fortran-77 that
accepts finite element modeling (FEM) information in a neutral format,
allows editing, and produces input data sets for various Finite Element
Analysis (FEA) programs. It provides a link between mesh generators
(stand-alone or CAD system based) and analysis programs, through data

standards (see Figure A.1).

Mesh
Generators “Xision
Navy Neutra} IGES FEA Movie BYU
PERLRS [FEA Format (Entities Geometry

I

Reformatter Rosetta. BYU

Analysis

Programs

Graphics Movie BYU
Output -Display-

Figure A1 Finite Element Modeling Data Paths

69

Most mesh generators have the capability to create input data
sets for popular FEA codes such as Nastran, Ansys, SAP, etc. However, the
user may also need to transfer data to specialized FEA codes that have no
direct data path. Rosetta opens that data path via three standard formats:
1) the Navy FEM neutral file developed jointly by China Lake NWC and BYU,
2) the IGES Version 2.0 FEM entities (nodes and elements only), and 3) the
Movie.BYU polygon data file. This version of Rosetta.BYU allows FEM output
to be reformatted into an input data set for either SAP IV or ABAQUS.
Support of additional programs requires the addition of a subroutine to
unload data in the format of that program.

Rosetta uses a custom data structure to maintain relationships
between finite element entities. The data structure provides the

following capabilities:

. Model checking to detect missing nodes and elements, and
elements without material properties.

2. Complete editing for each of the 14 FEA data entries. Geometry
may be input from a file, and the remaining portion of the mode]
entered interactively.

3. Compression of entities to eliminate gaps in ID numbers, which
are unacceptable to some FEA programs. Gaps are sometimes left
in the model by the mesh generator.

4 Reordering of the data set to make it easier to understand.

This program uses the Squire.BYU library for terminal input and

editing. It does not require a graphics terminal.

SAMPLE OUTPUT

70

The data for the small model shown is listed below in the Navy

neutral, IGES, and Movie.BYU formats.

between the Navy and IGES files.

Navy Neutral Format

HEAD, This model tests the Rosetta program;

NODE, 1,,0.0,0.0,2.0;
NODE, 2,,1.0,0.0.2.0;
NODE, 3,,2.0,0.0,2.0;
NODE, 4,, 0.0,0.0,1.0;
NODE, 5,,2.0,0.0,1.0;
NODE, 6,, 0.0,0.0,0.0;
NODE, 7,, 1.0,0.0,0.0;
NODE, 8,,2.0,0.0,0.0;
NODE, 9,,0.0,2.0,2.0;
NODE,10,, 1.0,2.0,2.0;
NODE,11,,2.0,2.0,2.0;
NODE,12,, 0.0,2.0,1.0;

NODE,13,,2.0,2.0,10;

NODE,14,,0.0,2.0,0.0;
NODE,15,, 1.0,2.0,0.0;
NODE,16,,2.0,2.0,0.0,
NODE,!7,,1.5,25,2.0;
NODE.!S,,OS 2.5,0.0,

NODE,19,,1.5,25,0.0;
NODE,20,, 1.0,3.0,2.0;
NODE,21,, 1.0,3.0,1.0;
NODE,22,, 1 0,3.0,0.0;
NODE,23,,0.0,1.0,2.0,
NODE,24,,2.0,1.0,2.0,

NODE,25,,0.0,1.0,0.0,
NODE,26,,2.0,1.0,0.0,

ELEM, 1,CSD20 00,13869,11,16,1425,74,10,13,15,12,23,24,26,25,

Ld

ELEM,2,CPS8 ,0.0,11,16,22,20,13,19,21,17;
ELEM, 3.DINTER3,0,0, 16,15,14,19,22,18;

Note the difference in

8)]

file size

IGES Version 2.0 Format

This mode! tests the Rosetta program
seereneeness | THROSEHEBYU,

!
2
3

20
21

22

L4

nJ
m

S 1
60000001

0 !
10 2
D 3
2D 4
D S
3D 6
D 7
4D 8
D 9
SD 10
D 11
6D 12
D 13
70 14
D 15
8D 16
0 ¥
90 18
D 19
10D 20
0 21
11D 22
D 23
12D 24
D 25
13D 26
D 27
14D 28
D 29
15D 30
D 31
16D 32
D 33
170 34
D 35
18D 36
0 37
19D 38
D 39
20D 40
D 41
21D 42
) 43
22D 44

71

134 23
134
134 24
134
134 25
134
134 26
134
136 27
136
126 29
136 i
126 30 oy IS
136 4 R
134,.0.0, 0:0, 2.0,
134, 1.0, 0.0, 2.0,
134, 2.0, 0.0, 2.0,
0
0

134, 0.0, 0.0, 1.0,
134, 2.0, 0.0, 1.
134, 0.0, 0.0, 0.0,
134, 1.0, 0.0, 0.0,
134, 2.0, 0.0, 0.0,
154,/0.0; 20, 20,
194, 1.9, 20, 20,
134, 2.0, 20, 2
134, 0.0, 20, 1.
134, 2.0, 20, |
134, 0.0, 2.0, 0.
134. 1.0, 20, 0.
154,20, 20, 0.
134, 1.5, 28, 2.
134, 0.5, 2.5, OO
134, 1.5, 2.5, 0.0,
134, 1.0, 3.0, 20
134, 1.0, 3.0, 1.0
134, 1.0, 3.0, 0.0,

0,

0.

134,00, 1.0, 2
134, 2.0, 1.0, 2
134, 0.0, 1.0, 0.0, O
134, 2.0, 1.0, 0.0,0;

136,18,20,1,3,5,47.21,19,17,45,7,9.25.23,11,13,15,51.31,29,27,

49,5HC3D20;
136,6,8,21.25,31.37,43,41,39,33,4HCPS8;
136.3,6,31,29,27,35,43,37, 7THDINTERS3;

S 16 1D 58P 30

23D
24D
250
26D
1D
20

3D
1P
3p
5p
7P
9p
1P
13p
15p
17p
19p
21P
23p
25p
27p
29P
31p
33p
35P
37p
39p
41p
43p
45p
47P
48p
51P
53p
53p
55p
57p

72

Movie.BYU Polygon Format

1 26 8 62

1 8
0.00000E +00 0.00000E + 00 2.00000E +00 1.00000E +00 0.00000E +00 2.00000E+00
2.00000€+00 0.00000E+00 2.00000E+00 0.00000E +00 0.00000E+00 1.00000E+00
2.00000E+00 0.00000E+00 1.00000E +00 0.00000E +00 0.00000E +00 0.00000E +00
1.00000E+00 0.00000E +00 0.00000E +00 2.00000E + 00 0.00000E +00 0.00000E + 00
0.00000E +00 2.00000E +00 2.00000E +00 1.00000E +00 2.00000E + 00 2.00000E + 00
2.00000E +00 2.00000E +00 2.00000€E +00 0.00000€ +00 2.00000E + 00 1.00000E +00
2.00000E+00 2.00000E+00 1.00000€E+00 0.00000E+00 2.00000E +00 0.00000E+00
1.00000E +00 2.00000E +00 0.00000E+00 2.00000E + 00 2.00000E + 00 0.00000E+00
1.50000E + 00 2.50000E + 00 2.00000E +00 S.00000E-01 2.50000E + 00 0.00000E + 00
1.50000E+00 2.50000€+00 0.00000E +00 1.00000E+00 3.00000E+00 2.00000E + 00
1.00000E +00 3.00000E +00 1.00000E+00 1.00000E +00 3.00000E +00 0.00000€ +00
0.00000€ +00 1.00000€ +00 2.00000E +00 2.00000E+00 1.00000E +00 2.00000E +00
0.00000E+00 1.00000E+00 0.00000E +00 2.00000€E +00 1.00COOE +00 0.00000CE +00

73

! 2 3 24 11 10 9-23 6 25 14 1S 16 26 8 -7
5 S 8 26 16 13 11 -24 11 13 16 15 14 12 9 -10
9 12 14 25 6 4 1 -23 1 4 6 7 8 S 3§ -2

13 16 19 22 21 20 -17 16 1S 14 18 22 -19

74
Rosetta.BYU Sample Execution

This section contains a step-by-step sample execution of Rosetta.
Major options and input/editing procedures of the Squire.BYU library are
shown. The Squire.BYU library implements muiti-level prompts and
buffering of commands to accommodate varied user capabilities. The first
level prompt is terse for the expert user, the second level is a fairly
complete description, and the third level suggests a response. The second
and third level prompts are shown when the user hits the return key. The
expert user may also answer questions ahead by placing the appropriate
responses on a single line, separated by spaces.

Comments shown in /Z2//cs do not appear on the terminal screen
but have been added here for description purposes. User input is shown in
bold to make the session easier to understand.

login: ross (login procedure)
Password:

Brigham Young University - Mechanical Engineering Department
Welcome to Hewlett-Packard System 9000 HP-UX

Welcome sir: Your terminal is set to be a vt 100

[1]cd format
[2] 1s (check ror input data rile)
Dobject/ convert* hole.igs spline.out test.neu

Dsource/ convert.f outrose* test.geo
EDBASE flexure.n7 rosetta* test.igs
EDBASE.SEQ hole.dat rosetta.for test.igs2

EDBASE.seq hole.del spline.dat test.mov

(3] rosetta (execute the program)

Enter terminal type: (1,2,3,4)

<return> (hitting return ror 2nd level prompt)
| - Hewlett-Packard Terminals

2 - Digital YT100

3 - Yisual 200/500
4 - Dumb Terminai (no cursor control)

2 (pick terminal type so the Squire
utilities know how to clear screen)

75

33 F6 3 T 3 WM W I I W I I I I W I I I I IR
* Rosetta.BYU - Finite Element Data Translator & Reformatter *

* *
* Note: at any time you can...
* 1) hit the return key to get more information.
* 2) Answer question ahead (if desired) by entering the
* corresponding answers, separated by spaces.
L2t 2t sl sttt LSS S
Select input file type (i,n,m,q):
<returm>
Select the type of input file to read in:
i- IGES version 2.0
n - Navy neutral file, version 1.0
m - Movie.byu geometry file
q - Quit execution of Rosetta
n
initializing FEM data structure....

X ok K K

Navy Neutral File Input.
Enter data set name (15 CHARS MAX).

flexure.n7 (this rile was generated by a CV CAD system,
with 456 elements, 555 nodes, as shown below.)

S0 Lines Read...
100 Lines Read...
150 Lines Read...
200 Lines Read...
250 Lines Read...
300 Lines Read...
350 Lines Read...
400 Lines Read...
450 Lines Read. ..
500 Lines Read...
S50 Lines Read... '--:-_-_..,.:.

SHELL Plate and Shell type 6 -~ SAP4
Connectivity: 1 2 3 4 (as new e/ement lypes are reaag
IGES Topology # S:LQUAD - Linear Quadrilateral re/aled /nformation 1s shown)

600 Lines Read...

650 Lines Read...

700 Lines Read...

750 Lines Read..

800 Lines Read...

850 Lines Read...

900 Lines Read...

950 Lines Read..

1000 Lines Read. .

Hit <RETURN> to continue

Summary of Maximum ID numbers:

Elements = 456 Constraints: Loads:
Element Types = 1 Permanent= 0 Element =
Nodes = 555 Multiple= 0 Nodal =
OmittedDOF = 0 Harmonic =
Material Props= 0 Retained DOF = O
Geometric Props= 0 Trans Matrices= O

oo o

Storage: Integer=30.8% Real= .0 Text= 0%

Select process option (c,e,i,1,8,w.,Q):
<return>

Select a processing option: (main options of Rosetta)
c - Check for model completeness
e - Edit the current model data
i - read in adifferent Input file
1 - List the current model data
s - give Status of data storage
w - Write out the model to a file
q - Quit execution of Rosetta
e

Select edit option (a,h,ne.c,p,1,1,0):
<return>

Select an edit option: (eait options of Rosetta)
a - Add/delete items to node/element lists
h - Header information
n - Node data
e - Element data
¢ - Constraint data (p,m,o,r)
p - Property data (m,g)
] - Load data (n,e)
t - Transformation matrix data
q - quit list/edit option
c
Select constraint type to list/edit (p,m,0,r,q):
<return>
p - Permanent constraint set
m - Multilple constraint data
0 - Omitted degree-of-freedom constraint set
r - Retained degree-of-freedom constraint set
q - Quit load list/edit.

p

Enter EDIT command: (c,d,i,1,a)
<return>

76

¢ - change
d - delete
i - insert
1 - list data
q - quit edit
1
Enter entity ID number to edit:
|
Please enter the DOF(s) constrained:
123456
Enter value for displacement of permanent constraint
0
Create List of Nodes for this Constraint
Enter beginning, ending ID number for range:
19
Enter beginning, ending ID number for range:
<return>
You need to generate an element or node list. To simplify the
input, a range of numbers are entered each time by inputting
low and high ID numbers. For example, by entering: 15 the
number 1,2,3,4, and S will be added to the list. Single
numbers are entered by making the ending number in the range
the same or less as the beginning number. To make a list with
1356789 10,youwouldenter 1 133510 . Enter q
1o quit entering ranges of numbers for the list.

q

1 § 2 2 3) 3 4 4 8§ 5
6) 6 7) 7 8 8 9) 9
This data 0K? (y,n)

Y

EDIT OF PERMANENT CONSTRAINT # 1

Degree of freedom constrained: 1) 123456
Magnitude of permanent constraint: 11) .00000000E +00

Constrained Nodes:

2) 1 3) 2 4 3 S5) 4 6) S 7) 6
8 7 9) 8 10) 9

This data OK? (y,n)
Yy

Select edit option (&,h,n.e,c,p,1.t,q):
cpi2

Please enter the DOF(s) constrained:

345

77

78

Enter value for displacement of permanent constraint

0

Create List of Nodes for this Constraint

Enter beginning, ending ID number for range:

491 494 505 512 518 520 q (burrering responses)

1) 491 2) 492 3) 493 4) 494 5) 505
6) 506 7) 507 8) 508 9) 509 10) 510
11) 511 12) S12 13) 518 14) 519 15) 520
This data OK? (y,n)
<return>
Enter: y -to accept data as shown.
n -to make changes.
n
Enter EDIT command: (c,d,i,1,q)
<return>
¢ - change
d - delete
i - insert
| - list data
q - quit edit
C
Change WHICH item:
q
Enter EDIT command: (c,d,i,1,9)
d
Delete WHICH item?
14
Item* 14= 519
Delete this item? (y/n)

y

1) 491 2) 492 3) 493 4) 494 5) 505
6) 506 7) S07 8) S08 9) 509 10) SI10
11) S11 12) 512 13) S18 14) 520

Enter EDIT command: (c,d,i,1,q)

q
EDIT OF PERMANENT CONSTRAINT # 2

Degree of freedom constrained: 1) 345
Magnitude of permanent constraint: 16) .00000000E +00
Constrained Nodes:
2) 491 3) 492 4) 493 S) 494 6) 505 7) 506
8) 507 9) S08 10) 509 11) S10 12) 511 13) 512
14) 518 15) 520
This data OK? (y,n)

Y

Select edit option (a,h,n.e.c,p,l,t,q):
q

Select process option (c,e,i,1,s,w,q):
!
Select category to list (a,n.e,m g,1.c,t ,a):
<return>
a - list All model data
n - Nodes
e - Elements
m - Material properties
g - Geometric properties
| = Loads
¢ - Constraints
q - Quit list option
G
Save copy to disk file? (y/n)
n

CONSTRAINT INFORMATION

Permanent Constraints:
D

NUM DOF YALUE Nodes:
1 123456 .0000E+00 1

512 518 520
Select category to list (a,n,e,m,g,l,c,t,a):

q

Select process option (c,e,i,1,s,w,Q):
w

Select output file type (c,i,m,n,5,9):
<return>
Select the type of output file to write out:
c - Coyote.BYU heat transfer program
1 - Iges version 2.0 format
m - Movie.byu polygonal format
n - Navy neutral file version 1.0
s - Sap iv input data file
q - Quit program execution
S

Output of SAP 1V Input Data File...

flexsap.out

23 45 6189
2 345 .0000E+00 491 492 493 494 505 506 S07 508 S09 510 St

(output options of Rosetta)

Enter data set name (15 CHARS MAX).

79

80

Select type of analysis to perform (se,f,r,d,q): (FEA Code-specific questions)

<return>
Select the type of analysis to perform with SAP IV:
s - Static analysis
e - Eigenvalue/eigenvector solution
f - Forced dynamic response by mode superposition
r - Response spectrum analysis
d - Direct step-by-step integration
q - Quit attempt to create a SAP 1Y input data set

Enter number of natural frequencies to be found:
6

Reviewing constraints....

Writing Node Cards...

Writing Element Cards...

Select process option (c.e,i,1,5,w.q):
q
[4] exit (log off computer)

81

Programmer Infermation

DATA STANDARDS

NAVY NEUTRAL STANDARD

The Navy Neutral file was developed jointly between the Naval
Weapons Center at China Lake, California and Brigham Young University. It
stores finite element information as one of thirteen entities within a
free-format text file. Each entity (node, element, etc.) occupies a
separate record and is identified by a four-character keyword. An
identification (ID) number follows the keyword. The entities, their
keywords, and content are shown in Table A.1. Data fields are separated
by commas, and each record is terminated with a semicolon (See Figure

A.2). This format has the following advantages:

1. Neutral file is human-readable.
Changes may be made by hand using a standard text editor.

Information is not column dependent.

HHB

Each record may occupy as many lines in the file as needed.

The element and nodal load records consist solely of a group of
elements or nodes, as shown in the Content section of Table 1. Additional
information is usually needed to complete the load information, depending
on the type of analysis (linear or nonlinear, static or dynamic, constant or

variable load history, etc.). The additional information-is entered by the

82

user when the neutral data is reformatted to prepare an input set for a

particular FEA program. As more experience is gained with the neutral

format, more information may be added to the load cards.

Table A1 FEA Neutral File Entities

Type Key

Header HEAD
Node NODE
Element ELEM
Material Property MATL
Geometric Property PROP
Load, Element ELOD
Load, Nodal NLOD
Load, Harmonic HARM
Constraint, Perm PCON
Constraint, Multiple. MCON

Constraint, Omitted DOF ODOF
Constraint, Retained DOF RDOF
Transformation Matrix TRAN

Content

Comment or title card

Transf. matrix #, coordinates, scalar
Name, mat'l #, geom prop *, node *'s’
Name, isotropic condition, reference
type, reference value, property vailues
Name, property values

Element #'s

Node *'s

DOF, displacement value, node *'s
DOF(s), displacement value, node #'s
Dependent, independent node #'s, ratios
Degree of freedom omitted, node *'s
Degree of freedom retained, node #'s
Coordinate system type, matrix values

NODE, 127,0,-.18370E2,0.,.10500E 1,0,

NODE,273,0,-.16214E2,-,77640E0,.97686E0,0.;

ELEM,83,QUAD,0,0,260,259,112,113;

ELEM,1,QUAD,0,0,148,273,126,127,

ELEM,2,QUAD,0,0,169,189,273,148;

NODE,275,0,.39994E 1,-.37848E0,.291 13E0,0,;

NODE, 108,0,.49734E1,0.,.25809E0,0,,

MATL,3,5TEEL,ISOTROPIC,TEMP,100.,.37058E7,.14028E7,
0.,.37058E7,0.,.14028E7,.00772;

Figure A2 Sample Portion of Neutral File from CV

83

IGES VERSION 2.0 STANDARD

The IGES Version 2.0 format includes node and element entities,
but not loads, constraints, or properties. The IGES FEM Subcommittee has
suggested formats for the missing entities through "Request For Change”
documents [8]. Rosetta uses the suggested IGES format for nodes and
elements. As other entities are officially added to the standard, they will
be added to Rosetta.

Each IGES entity is stored as a combination of two directory
records and a parameter record. Each directory record contains 10 fields.
The first field identifies the entity type (134=Node, 136=Eiement). The
second field of the first card contains the number of the associated
parameter card and the eighth and ninth field of the second record contains
the entity l1abel and entity ID number. Other directory fields are not used
by Rosetta.

Parameter records store data in a free format. The node
parameter record contains the entity type and the X, Y, and Z coordinates.
The element parameter record contains the entity type, IGES topology type,
number of node in element, pointers to directory records of associated

nodes, and element type name.

MOVIE.BYU POLYGONAL FORMAT

Movie.BYU uses either a polygonal or solid representation of
objects. Rosetta can transiate a polygon file to an equivalent finite
element mesh, allowing Movie utilities to create mesh geometry. Both
polygon and solid Movie data files may be created from Navy neutral or

IGES format data files, allowing display and verification of meshes.

84

Rosetta Data Structure

A versatile data structure is the most important part of Rosetta.
Various data anomalies were considered as data structure concepts were
developed. One problem is that the records may not be input in order (as
shown in Figure A.2), but FEA programs often require ordered data in their
input files. Another probiem is gaps in entity numbering that may resuit
from mesh editing. FEA programs may not accept gaps in entity numbers.

Also, the relationship between quantities of one entitiy vs.
another varies widely, depending on the application. For exampie, 2
compiex, machined part might contain thousands of nodes and elements and
a single material property, while a cast part might have a different
material property for each element (properties dependent on cooling
curve). The data structure should adapt to either extreme.

A complete data structure will support input and output of an
arbitrary number of data formats through subroutines that load or unioad
records from data files. The purpose of the reformatter software is to
simplify the support of any new FEA input file format.

Rosetta uses three arrays, VAL, RVAL and NAME, to store integer,
real, and text data, respectively. Data from each entity type is stored in
blocks within these arrays. A directory array (named after the entity
keyword, i.e. NODE, ELEM, MATL) points to an associated block in the |VAL
array. The IVAL block may contain integer data for the entity and pointers
to the RVAL and NAME array (see Figure A.3). Each value in the directory
arrays is initialized to -1. Thus, a directory arrary location with a value

of -1 indicates that the associated entity has not been defined.

85

Node Information:
NODE (node number) = transformation matrix number

Coordinates, scalar: X - Array (4.N)
Node * X Y 7 Scalar
1 x] ul 21 Sl
2 a2 u2 5 2
N xn un Zn Sn

N R R AR ER RN R RN AR] R NN RN RN NN

Element Information:
ELEM (element number) = pointer to IVAL block

IVAL element block ENAM Array
+0 |Pointer- Elem Name— 1 [Elem Nam |

IGES element type (+) 2 [Elem Nam 2
+1 ar - |[Elem Nam

Number of Nodes (-NN)
+2 Material Prop |ID

+3 Geometric Prop ID
+4 Node Numbers

+3-NN{ Last Node Number

--- AR P R R R

Material Property Information:
MATL (Mat'l Property Number) = pointer to IVAL block

\VAL Block _| RVAL Block L‘ NAME Block
+0 |Names — +Q | Reference Val +Q |Prop Type
+| |Properties > +1 |Property vVal 1] [+1]isotropy Caond
+2|* Props (NP) : : +2 |Ref Type
+3 | Mat'l Number +NP|Prop Val NP

Figure A3 Entity Data Blocks in Rosetta Data Structure
(sheet 1 of 3)

86

Geometric Property Information

GEOM (Geom Property Number) = pointer to IVAL block

IVAL Block _] RVAL Block Ll NAME Block

+0|Name +0 | Reference Val +0 |Prop Type]
+1 |Properties = +1 |Property Val !
+2|* Props (NP) : :

“NP|Prop Vel NP

9, ©)

Element™, Nndal@ and Harmonic™ Load Information:

LOAD (1.20r3 Load Number) = pointer to IVAL block

¥

IVAL Block RvVAL Block NAME Block
+0| ** Name > _r,[*OILoad value | A +0|Load Type |
+ | | *Properties—>
+2|* Entities(NE)
+3 | *Load DOF
+4|Entity 1

Not currently active for any load.

* Not currently active for element or
noda! loads

+3+NE} Entity NE

Entities may be node, etement numbers

Transformation Matrix Information:
TRAN (Tran. Matrix Number) = pointer to IVAL block

IVAL Block J RVAL E!IockL‘ NAME Block

+0 Name = sO0[T1,1 +0 Type |
+1 [Matrix Val 's=> +1]T1 2
+2|T1 3
. +31T1,4
T Tz iz Tyal % X frall2t
+5|T2,2
Ton To2 Tos Taal Y |=1Y2| [6]72.3
+7 T214
T30 T3z T33 Ts.4] (% | <873,
+9|T32
! “10[733
+11[T3 4

Figure A3 Entity Data Blocks in Rosetta Data Structure
(sheet 2 of 3)

87

Constraint Information:
Permanent®, Hultipla®, Omitted DUF©, Retained DOF@
CONS (1,2,3,4 , Constraint Number) = pointer ta IVAL block

ivAL Block @ RVAL Block
+0|* Ind Noce(NN}J_) +0 | Ratig *|
+1|Disp Ratios > : :
+2 | Dep Node * | +NN-1} Ratio #NN
+3 |Degof Freedom
+41{ind. Node # NN
+5 |Degof Freedom

+3+2%NN-1{ Ind. Node *
+3 +2*NN|Degaf Freedom

ivaL Black O ® @ RVAL Block

+0 [Num Nocles(NN)J_,[+O]Set Displcmnt| (O
+1 |[Paint Disp(D->
+2 |Degof Freedom

+3 | Node * 1

+2 +NN| Node #NN

Element Types information:

LELM (Element Type) = Pointer to IVAL Block
ENAM (Element Type) = Name of Element Type

IVAL Block
+0 |IGES Topology *
+1 |Num Nodes (NN)
+2 |Map to Node * 1

+ [+NNj Map to Node #NN

mnm
(_'_}
3
(g4
>
(o}
m
=
—t

ity Data Blocks in Rosetta Data Structure
(sheet 3 of 3)

88

The first 42 locations in the IVAL array contain the dimensioned
size and the current number of values stored in each array in the data
structure (see Figure A.4). This information is used to check for data

overflow and to monitor array use.

S :::3 Size 'ifuarlrueam ’::tlit::

Node Point NODE 1 21 0
Finite Element ELEM 2 22 0
Material Property MATL 3 23 0
Geometric Property PROP 4 24 0]
Element Load 25 0
Nodal Load LOAD 5 26 0
Harmaonic Load 27 0
Permanent Constraint 30 0
Multiple Constraint 31 0
Omitted Degree of Freedom e 8 32 0
Retained Degree of Freedom 33 0
Transformation Matrix TRAN 7 36 0
Distinct Element Names ENAM

Element Types (Topology) LELM o o 9
Integer Value Storage IvaL 9 38 42
Real Value Storage RvaAL 10 39 0
Text String Storage NAME 11 40 0
Header Information HEAD 12 4] ¢

89

Figure A5 demonstrates a sample application of the data
structure, given the neutral data records for geometric property *4 and
element #2. When a record is input, the keyword is checked to determine
the entity type. The entity number is then read. Since the record is for
geometric property #4, the 4th slot in the geometric property directory
array, PROP, is set to point to the beginning location of a block in the | VAL
array. Since the first 42 values compose the header, the first available
location is slot 43. The first value in the |VAL geometric property block
points to the siot in array NAME containing the name of the property. The
next slot (44) points to the beginning location of a biock in the RVAL array
that contains the geometric properties. Slot 45 in the IVAL block contains
the number of values in the RVAL block.

Neutral File Input.

PROP,4,BEAMSECT ,78E7,1.3E6,56;
ELEM,2,TRIA,1,4,13,8,7,;

Resuiting Data Structure:

ELEM IVAL RYAL

1 -1 143 12 1|p! 78E7

2] 46 = 44| | — 2|p2 1 3EB

31 =1 1 45{nval 3 3Ip3 56

al -1 146 1 > 4 NAME

91 =1 47|nnode 3 A 1| BEAMSECT

48| mat 1 2

PROP 49/geom 4 ENANM 3

i -1 50| node | 13 1{TRIA a

21 -1 5i|node] 8 -

3| -1 S2|node k 7 3

4| 43 —

51 =1

Figure AS Sample Application of Rosetta Data Structure

S0

A similar procedure is followed with the element record. The
record is intrepreted, and found to describe an element with an iD number
of 2. A pointer for element *2 is stored in directory array, ELEM, and an
element block is added to array IVAL, starting at the first available
location, #46. The first slot in the block points to a location in array
ENAM, which stores all distinct element types by name. (The element
names could have been stored in array NAME, but there were several
advantages to localizing the information in ENAM. Each time an element
record is read, array ENAM is searched to see if the element name has been
previously stored. If the name is not present, it is added to the list. It is
easier to keep track of distinct element names, than to store repetitively
element names of the same element type.) The second slot of the IVAL
block (47) stores the number of nodes in the element. The third and forth
slots store the ID numbers of the material and geometric properties for

the element. The remaining slots store the node numbers.

Adding Input/Output Subroutines

Subroutines are easily added to Rosetta to support additional FEA
codes and new FEM data standards. Input subroutine names begin with
"RED" and output subroutine names begin "WRT" (short for "read” and
“write”). The best way to learn how to write an input or output subroutine
is to examine existing subroutines in the program. Various utility
routines are available to help perform operations with the data structure.
A map of Rosetta subroutines is given in Figure A6, and Table A.2 contains
a brief summary of the purpose of each routine. Numerous comments in

the program listing explain the algorithms used in Rosetta.

9l

Table A.2 Rosetta Subroutine Description

BANDWD - Inputs a node cross-reference file to improve bandwidth
BUFOUT =~ Outputs a line of element connectivity for Movie files
CHECK - Calls subroutines for model checking options

CMPDIR - Compresses a directory array (ELEM, MATL, etc.)
CMPELM - Compresses element numbering

CMPMAT - Compresses material property numbering

CMPNOD - Compresses node numbering

EDCHNG - Editing: change an existing entity

EDELET - Editing: delete an entity

EDINSR - Editing: insert an entity

EDIT - Call subroutines for editing options

EENLIS - Editing: Nodes or elements in list (constraints, loads)
ENTNUM - Request entity number for edit, checks if it exists
FNDELM - Search element type database file for each new eiement type.
GETDIR - Get directory record data from an IGES input file
GETGLB - Get global record data from an IGES input file

GETPAR - Get parameter record data from and IGES input file
IDLIST - Allow user to quickly create list of node, element #'s

LIST - List entities in the data structure, save list on disk
MISSNG - List missing entities for a given entity
NEXT - Input and convert the next field in free format input.

NOMORE - Checks an entity's ID number to see if it is within range
ORDERE - Reorders 2-D elements to be CCW as viewed from above.
PACOTI - Qutputs char buffer as IGES parameter rec, blanks removed
PACOUT - Ouputs a character buffer to disk, after removing blanks
POLYOT - Calculate polygon output to Movie.BYU for 2- and 3-D elements
REDIGS - Call subroutines to read in a IGES input file

REDMOV - Input a Movie.BYU geometry file (DISPLAY)

REDNEU - Read in a Navy Neutral input file

TSPACE - Check for temporary scratch space in the IYAL array.
WRTIGS - Writeout and IGES data file

WRTMOY - Write out a Movie.BYU file (2-D:Display and 3-D:Section)
WRTNEU - Write out a Navy Neutral file

WRTSAP - Write out a SAP |V input data set

I*¥**** - Multi-level prompt routines or edit format routines.

Element Type Data Base
The element names used in the Navy data format match names of
elements in the target FEA code. For example, CPS8 is the name of an
8-node quad used for plane stress problems with Abaqus. Rosetta inputs the

element name and the number of nodes. Without additional information,

92

there would be no way to distinguish between an 8-node quad element and an
8-node brick element. Even if the general form of the element could be
determined, differences in local element node numbering between FEA
programs could be confusing. Some codes order nodes in a counterclockwise
order, while others number corner nodes, then mid-side nodes. Node number
order is crucial in creating correct Movie.BYU data files.

These problems are solved with an element type data base that
stores element names, descriptions, and node numbering information. This
database is stored in a direct-access file that is created and maintained
using EDBASE.BYU. Rosetta used the direct-access file to recognize element
names when data files are input. The format used in the direct access file
is shown in Table A3. The dual set of pointers allow the data base to be
searched according to number of nodes in the element (needed for Navy

neutral input) or according to the IGES topology type (needed for IGES input).

= |

ROSETTA

e - ke e > ke
[LIST | [wRTIGS| [WRTMOV| [WRTNEU| [WRTSAP|

I

NOMORE

PACOT!

Figure A6 Rosetta Subroutine Map

93

Table A3 - Direct Access Record Formats for Element Type Data

A. Header Records

Record Number 7

Columns Variable

1- 4
S- 8
9~12
13-16
16-20
21-24
25-28
29-32
33-36
37-40
41-44
45-48
49-52
53-56
57-60

IPOINT(1)
IPOINT(2)
IPOINT(3)
IPOINT(4)
IPOINT(S)
IPOINT(6)
IPOINT(7)
IPOINT(8)
IPOINT(9)
IPOINT(10)
IPOINT(11)
IPOINT(12)
IPOINT(13)
IPOINT(14)

AVAIL

- Format(20/4)

Description

Pointer to element type with 2 nodes
Pointer to element type with 3 nodes
Pointer to element type with 4 nodes
Pointer to element type with 6 nodes
Pointer to element type with 8 nodes
Pointer to element type with 9 nodes
Pointer to element type with 10 nodes
Pointer to element type with 12 nodes
Pointer to element type with 15 nodes
Pointer to element type with 16 nodes
Pointer to element type with 18 nodes
Pointer to element type with 20 nodes
Pointer to element type with 24 nodes
Pointer to element type with 32 nodes
Location of next empty record

Record Number 2.3 - Formal(20/4)
Columns Variable

1-80

1-24

JPOINT(1-20)

JPOINT(21-26)

B. Element Type Data Records

Description
Pointer to element with IGES topology 1-20

Pointer to element type IGES topology 21-26

Record Number | - Format(2/4.A15A57)
Columns Variable

1- 4
5- 8
9-23

24-80

LOCNOD
LOCIGS
TEXT(1:15)
TEXT(16:72)

Description
Paointer to next element with N nodes.
Pointer to next element IGES topology K.
Element Name
Element Description

Record Number 2 - Format(33/2)
Columns Variable

1-64

65-66

IGSMAP(1-32)

IGEST

Description
Local element numbers corresponding to IGES
topology numbers
IGES topology type

APPENDIX B

DAVINCI DOCUMENTATION

94

95

Davinci.BYU

An Engineering Workstation Manager
(User & Programmer Guide)

Evan S. Christensen
Brant A. Ross
Kenneth W. Chase
Terril N. Hurst
Steven E. Benzley

Coilege of Engineering
Brigham Young University
Provo, Utah 84602

-
>.
Davinci.

Neither Brignam Young University nor its employees makes any warranty
expressed or implied, or assumes any legai responsibiiity for the
accuracy, completeness or usefulness of this computer program or its
associated documentation

Table of Contents

Page
I. USER'S GUIDE INFORMATION
Program Description.............. 97
Davinci.BYU Options Summary 98
Davinci.BYU Sample Execution. 100
Move Commands 102
Information Commands 105
Execution Commands (R
Edit Commands .- ; o vas o ves o 13
Davincy Option =%, . . con sai 00 124
Verify Command 124
37 124
initialization of Data Files 125
I1. PROGRAMMER INFORMATION
Program Organization............. 129
Data File Structure 131
FILMEN Data FilE - oos covss o e 5o 0

ZFILEZ Data File .. cow on v on s o g3

96

97

|. USER'S GUIDE INFORMATION

This section of the documentation contains a brief description of
the Davinci, Sentinel, and Gateway programs, a summary of the available
Davinci options, and a sample execution of the Davinci program.
Information regarding the initialization of the FILMEN and ZFILEZ data
files is also included in this section. Table 1, which is a listing of the
Davinci options, may be used as an index to the sampie execution.

Program Description

Davinci.BYU is a new approach to establiishing an engineering
workstation environment. It is a computer program written in Fortran
that helps engineers use computer software more efficiently through
classification of programs and data files. The user can easily organize a
library of programs into menus interactively. For each program, Davinci
will store:

1. The program execution instruction.

2. Abrief description of the program.

3. Location of manuals and support people.

4. Location of the source file for the program.

Data files may also be classified using up to six user-defined
categories, as well as by name, size, time of creation, and status.
Davinci automatically prompts for information on new data files as they
are created. It can also store information on backed-up files. A few
suggestions for categories that might be used to organize data files
follow:

1. By program name - linking each file to the program it is
used with: Nastran, Visicalc, etc.

2. Byproject - linking each file to the appropriate project

number, name, or charge code.

By product - using a product number or name.

4. By customer - for users provider analysis services.

“

98

Two subsets of the Davinci program, Sentinel and Gateway, were created
for use in multi-user environments (mainframes, shared minicomuters,
etc.). Software shared by a group of computer users would be managed by
Sentinel and accessed by Gateway. Data file management features are
removed from both of these versions, and edit features appear only in the
systems manager's version, Sentinel. Sentinel and Gateway help users
share software and aid communication of software status.

Davinci, Sentinel, and Gateway run on VAX/VMS, VAX/Unix,
andHP9000/HPUX systems. They require multi-tasking capabilities to be
fully operational.

Davinci.BYU Options Summary

Davinci.BYU offers a fiexible program structure by allowing the user
to select desired options. The various paths the user can take during
program execution are shown in Table 1. Although this table does not
illustrate all of the requests for user input, it does provide the user with
a general idea of the sequence of prompts encountered. As the avaiiable
options differ between the Davinci, Sentinel, and Gateway programs,
options that apply to Davinci only are marked with * and those that
apply to Davinci and Sentinel only are marked with ** Table | aiso
serves as an index to the sample run which follows. Although three
levels of prompt are available with each request for user input, oniy the
first two levels are shown.

Table 1 - DAVINCI OPTIONS SUMMARY AND SAMPLE RUN INDEX

Page
101 Select DAVINCI option: (m,i x.e,#¥,v.q)
102 m - Move through menus - Select MOVE option: (# ,u.t,f.q)

102 # - paths to menu number (*)

103 u - paths Up one level

103 t - paths to Top of menu structure

103 f - Find a menu containing a specific program

q - Quit, return to DAVINCI options
105 i- menu item Info - Select INFORMATION option: (q,s,r,m,f)
q - Quit information, return to DAVINCI options

105 s - types Synopsis of menu item
105 r - types external Reference summary for item
106 m - lists Menu structure with indentations
107 f - lists data File information - Select LIST option: (q.a,c)*
q - Quit file list option
107 a - ALL files to the screen
108 c - by Categories - Select SORT option: (n,t,b,s,*,0)
108 n - Name of dats file
109 t - Time of creation
110 b - Block size of datafile
s - Status (Backed-up, Online, and Temporary)
m # - User Category number 1-6: (user-defined)

q - Quit, to abort or complete SORT options
111 x - eXecute a program - Enter program NUMBER or NAME

[RR # - menu number of program to be executed
112 name - program’s code name
112 s - enter your own System command

q - Quit execute request

113 e~ Edit - Select EDIT TYPE option: (q.f.c,l,rr,0,m)**
q - Quit edit option

120 f - edit a single data File specified by name*

121 c - edit data file Categorfes*

123 | - edit the Library title

123 r - Restore a program in the menu on-1line

123 0 - save a program in the menu Off-line

113 m - edit Menus - Select EDIT option: (q,1,¢c,d,i)
q - Quit edit of a menu

119 1 - List information on menu item

118 ¢ - Change information on a menu item

119 d - Delete a menu item

13 i - Insert a menu item - Select MENU TYPE option: (g,c,p)

124 * - Move to category item or execute a program item
124 v - Yerify data file information, categorize new files*
124 g - Quit DAYINCI program

125 Initialization of Data F iles*

99

100
Davinci.BYU Sample Execution

This section contains a step by step execution of the Davinci,
Sentinel, and Gateway programs. Davinci is used to illustrate those
characteristics common to all three programs. The capabilities of the
Squire.BYU library are demonstrated, which include multi-level prompts
and buffering of commands. The first level prompt is terse for the
expert user, the second level is a fairly complete description, and the
third level suggests a response. The second and third levels are
summoned by simply hitting the RETURN key as stated. In addition to the
three levels of information on each prompt, prompts can also be
answered ahead by buffering up the appropriate commands. The more
familiar theuser becomes with the sequence of prompts, the better able
he will be to anticipate the next request for input and answer anead.
when commands are buffered, the corresponding prompts are suppressed.
This ability to buffer up commands by placing the appropriate responses
on a single line separated by spaces allows the experienced user to move
quickly through the program.

Comments shown in //a//cs do not appear on the terminal
screen but have been added here for description purposes. User input is
shown in bold to help the reader understand the sampie execution. The
menu data file, FILMEN, was taken from an industry application of
Davinci. The data file ZFILEZ was created using a sample directory.

$ davinci

336 2 336 I I X H I W K I I I I I W B I I I I KT I I F I I I IE I I I K I I I I I K NN NN K E
* DAVINCI.BYU, the engineering workstation manager

* - Brigham Young University, College of Engineering -

*

* Note A: At any time you can...

* 1) Hit the RETURN key to get more information.

* 2) Answer questions ahead by entering the corresponding

* answers, separated by spaces.

*

* Note B: DAYINCI is organized into menus containing num-

* bered items, each of which is either a CATEGORY or PROGRAM.
* 1) CATEGORIES may contain a list of new menu items which
* areaccessed using the m (Move) command.

* 2) PROGRAMS are executed using the x (eXecute) command.
* Each CATEGORY or PROGRAM can also be accessed by simply

* typing its item #, followed by a carriage return.
F I I KKK I IEIE I I I I I I NI K KK I IE I W NI KN X KKK RE

101

Hit <RETURN> to continue

when the RETURN key is hit to continue, the screen s cleared
ana the top menu or the program llbrary will aopear with a
prompt to select a Davinci, Sentinel, or Gateway option. When
Davinci and Sentinel are executed ror the rirst timeé, lhe usér
will be prompted ror information used to initialize the FILIMEN
and ZFILEZ data files. (See the section titled ‘Initialization of
Data Files")

HP 9000 Brigham Young University Software Library
1. Movie.BYU Graphics Package
2. OPTDES.BYU Design Optimization Package
3. Finite Element Modeling
4. Lumped-Mass Yibration/Modal Analysis
S. State-Space Control Systems Tools

Select DAVINCI option: (m,ix.e,#¥.v.q)
<Return>

m - Move through menus
i - Information on menu items
x - eXecute a program by menu item number or by name
e - Edit menus, or library title
- select item # (executes program, OR moves to category)
v - Yerify data file info, categorize new files
q - Quit DAYINCI program
<Return>

Why notenter: m to Move through menus, NO further help!

I the RETURN key IS hit rollowing a thirad level prompt, (he
user s told who to see or where to go for for aadaitional help
and the program Is terminatéd (not shown here) Lel's [irst
nvestigate the move options.

102

MOVE COMMANDS

The Davinci library is set up such that each menu item is either
a program or a category heading to a submenu. The MOVE options are used
to move through the menus and apply only to category menu items.

HP 9000 Brigham Young University Software Library
1. Movie.BYU Graphics Package
2. OPTDES.BYU Design Optimization Package
3. Finite Element Modeling
4. Lumped-Mass Yibration/Modal Analysis
5. State-Space Control Systems Tools

Select DAYVINCI option: (m,i,x.e,®* v,q)
m

Select MOVE option: (# ,u.t,f,q)
<Return>

- mave to menu number (#)

u - move Up one menu level

t - move to Top of menu structure
f - Find menu containing (name)
q - Quit, return to main options

MOVE TO ITEM NUMBER

! Let's move to item */, MovieBYU Graphics Package.
Movie.BYU Graphics Package

1. Movie.BYU Software

2. Documentation

3. Demos

Select DAVINCI option: (m,ix.e,®* v,

The Davincl option * can also be used to move to a category
menu item by entering the menu item number without the MNOVE
command m. Let's move to item | with this option:
|
Movie.BYU Software
1. DISPLAY - line drawings & continuous color output (DISPLAY)
2. UTILITY - create or edit Movie data files (UTILITY)
3. SECTION - clips and caps 3-D finite element models (SECTION)
4. COMPOSE - produce multiple image line drawings (COMPOSE)
S. TITLE - generate polygon-based characters for use in DISPLAY (TITLE)

6. MOSAIC - converts contour lines into polygon mosaics (MOSAIC)
Select DAVINCI option: (m,i,x.e,* v.q)

103

MOVE UP

Now, Jet's try the MOVE option v and move back to the
previous menu, TovieBYU Graphics Package. ™ We will make (his
move by bufrering the commands as described earlier.

m u

Movie.BYU Graphics Package
1. Movie.BYU Software
2. Documentation
3. Demos

Select DAYINCI option: (m,i,x.e,®,v,q)

AS you canh see, when commands are buffered, the prompls to the
buffered commands are suppressed THis allows the experienced
user to move quickly through the menus.

MOVE TO TOP
To move to the top menu, HP 9000 Brigham Young University
Software Library, from any location in the library, use MOVE option t.

mt
Movie.BYU Software
1. DISPLAY - line drawings & continuous color output (DISPLAY)
2. UTILITY - create or edit Movie data files (UTILITY)
3. SECTION - clips and caps 3-D finite element models (SECTION)
4. COMPOSE - produce multiple image line drawings (COMPOSE)
S. TITLE - generate polygon-based characters for use in DISPLAY (TITLE)
6. MOSAIC - converts contour lines into polygon mosaics (MOSAIC)

Select DAVINCI option: (m,ix.e,®*v,q)

FIND A PROGRAM

The rind command searches for and jumps to the menu
containing a particular program (specified Its keyword) For
example, let’s try to rind a menu containing program O/ISPLAY.

m f display

104

Movie.BYU Software
1. DISPLAY - line drawings & continuous color output (DISPLAY)
2. UTILITY - create or edit Movie data files (UTILITY)
3. SECTION - clips and caps 3-D finite element models (SECTION)
4. COMPOSE - produce multiple image line drawings (COMPOSE)
S. TITLE - generate polygon-based characters for use in DISPLAY (TITLE)
6. MOSAIC - converts contour lines into polygon mosaics (MOSAIC)

Select MOVE option: (#,ut.f.q)

To search [for another menu containing this program, (the user
can enter the rind command r and hit return. Otherwise, he may
search for a daifferent program by entering its name or choose
any or the other MOVE options.
f
Finite Element Modeling

1. SAP |V finite element analysis program (SAPIY)

2. Coyote.BYU conduction heat transfer FEM program (COYOTE)

3. Chiles.BYU 2-D fracture mechanics FEM analysis program (CHILES)

4. Rosetta.BYU FEM data reformatter (ROSETTA)
5. DISPLAY - line drawings & continuous color output (DISPLAY)

Select MOVE option: (# u,t,f.q)
f

Program: DISPLAY was not found
Hit <RETURN> to continue
<Return>

Finite Element Modeling
1. SAP IV finite element analysis program (SAP1Y)
2. Coyote.BYU conduction heat transfer FEM program (COYOTE)
3. Chiles.BYU 2-D fracture mechanics FEM analysis program (CHILES)
4. Rosetta.BYU FEM data reformatter (ROSETTA)
S. DISPLAY - line drawings & continuous color output (DISPLAY)

Select DAYINCI option: (m.,i,x.e,® ,v,q)

An attempt to move to a program menu item produces:
m 2
Error, Not a Category...

Select DAVINCI option: (m,i,x.e,®.v.Q)

Similar error messages appear at other places in the orogram
when the user gives an inappropriate response

105

INFORMATION COMMANDS

HP 9000 Brigham Young University Software Library
1. Movie.BYU Graphics Package
2. OPTDES.BYU Design Optimization Package
3. Finite Element Modeling
4. Lumped-Mass Yibration/Modal Analysis
5. State-Space Control Systems Tools

Select DAYINCI option: (m,i,x.e,*.v,Q)

1

Select INFORMATION option: (s,r,m,f,g)

<Return>
s - give Synopsis of menu item (#)
r - list References for additional help for item (#)
m - display Menu structure with indentations
f - lists data file information
q - Quit information, return to DAYINCI options

SYNOPSIS OF MENU ITEM

All menu items, whether categories or programs, hHave
a orief description. [/t can be seen Ly entéring s, Synopsis of a
menu item, and the item numbér. Lel's [look at [he Synopsis or
tem J, Finite Element Moaeling.

s 3
Finite Element Modeling

This category contains software used in the finite element modeling
process: preprocessing, analysis, and post processing

Hit <RETURN> to continue

REFERENCE ON PROGRAM ITEM

The rererence option r (program items only) contains
the location of manuals, aocuments, or personnel the user can
see for help. For example, the reference for item 2 7s:

Movie.BYU Software
1. DISPLAY - line drawings & continuous color output (DISPLAY)
2. UTILITY - create or edit Movie data files (UTILITY)
3. SECTION - clips and caps 3-D finite element models (SECTION)
4. COMPOSE - produce multiple image line drawings (COMPOSE)
S. TITLE - generate polygon-based characters for use in DISPLAY (TITLE)
6. MOSAIC - converts contour lines into polygon mosaics (MOSAIC)

106

Select DAYINC! option: (m,i,x.e,#.v.Q)
ir2

UTILITY - create or edit Movie data files
Refer to the manual in room 318 CB or see Richard Street in room 289 CB.

Hit <RETURN> to continue

LISTING OF MENU STRUCTURE

INFORMATION option m produces an indented 7isting of
the entire library menu structure, which may be saved to a
rile. Since the menu /isting is long, only part will be shown

Select DAVINCI option: (m,ix.e*v,q)
im

Write a copy of this list toafile? (y/n)
n

HP 9000 Brigham Young University Software Library
1. Movie.BYU Graphics Package
The MOVIE system of general purpose computer graphics programs facilitate
the display of three-dimensional, topological, and architectural models
as line drawings or as continuous tone shaded images. This software also
provides the capability toclip and cap three dimensional systems; modify
geometry, displacement, and/or scalar function files; generate new models
or title representations; and convert contour Tine definitions into poly-
gonal element mosaics.
1. Movie.BYU Software
This category contain the various program that form Movie.BYU:
Display, Utility, Section, Compose, Title, and Mosaic
1. DISPLAY - line drawings & continuous color output (DISPLAY)
DISPLAY is an interactive program for the display and animation of
any mode! composed of polygons. The program allows the user to
manipulate the model (rotate, translate, etc.), specify colors for
the background and the different element parts, and select the
display device.
Execution Command
/users/terril/Dmovie/display
External References
See the documentation section and demo section of the MOVIE menu.
2. UTILITY - create or edit Movie data files (UTILITY)
UTILITY creates or edits Fortran data files in a format compatibie
with the other programs in the MOVIE system. The program allows the
user to specify commands to make data files using the model generation

107

and transform capabilities, to read, write, or change data files, to
perform symmetry operations, to order polygon data consistently, to
gather ordered panal data into parts for smoothing, toc merge or re-
organize data files, to facilitate the display of functions of two

variables and surfaces of functions of three variables, or exit UTILITY.
Execution Command

/users/terril/Dmovie/utility

External References

Refer to the documentation section and demos section of the MOVIE menu.

Hit <RETURN> to continue

LISTING OF DATA FILES

The user can [1st ALL data [riles or data riles ralling
within certain category /limits. Data [rile Jistings may L@
obtained at any level in the library and may be saved to a file.

Select DAYINCI option: (m,i x.e®.v,Q)
17
Select L1ST option: (a,c,q)
<Return>
a - list out ALL files to the screen
Cc - 1ist files within 1im1ts of certatn Categories’
g - Quit information request and return to main options

da

Write a copy of this list toafile? (y/n)

n

File: Dfortran/ Created: 9/17/ 12:33
Size: 2736 Status: On-line

User Cat #1: Related Analysis Program = SAP 1Y
User Cat #2: Project Number, Name, or Charge Code = Wing 3.7
User Cat #3: Customer Name = Internal

File: Disp11 Created: 9/18/ 17:24

Size: 2409 Status: On-line

User Cat # 1. Related Analysis Program = SAP 1Y

User Cat #2: Project Number, Name, or Charge Code = Wing 3.7
User Cat #3: Customer Name = Boeing

File: Displ2 Created: 9/18/ 17:24

Size: 2409 Status: On-line

User Cat #1: Related Analysis Program = SAP IV

User Cat #2: Project Number, Name, or Charge Code = Wing 3.7
User Cat #3: Customer Name = Boeing

Hit <cRETURN> to continue
<Return>

108

Select LIST option: (a,c,g)
C
Select SORT option: (n,t,b,3,#.,q)
<Return>
n - Name of data file
t - Time of creation
b - Block size of data file
s - Status (Backed-up, Online, and Temporary)
| - User Category: Related Analysis Program
2 - User Category: Project Number, Name, or Charge Code
3 - User Category: Customer Name
q - Quit (if q isentered first time around, the SORT option is
aborted. Otherwise g completes the SORT option selections)

Selection of the L/IST option ¢ allows the user (o sort
of data riles to be listeg, by setting the upper and lower 1imits
(numerically or alphabetically) of the category(s) used in
sorting. — When mare than one -category Is used to sort, only
aata riles satisfying all of the category /limits will be listed
Although Davinci automatically classifies every data rile by
the rirst rour categories, data rile name, time of création,
size, and status, others are user-agerined For more
Information on how these user-derined categories are sel up
and editea, see sections: "Edit Commands” and “Initialization or
Data Files. "

To create a /isting of data riles that start with the
letter s, set the minimum value to sa and the maximum valué
to sz for the rile name category.

n
Enter the minimum value for this category:

<Return>
Enter: (value) - the minimum value (i.e. name, time of creation,
file block size, etc.) sets the lower limit
numerically or alphabetically for the data file search.
q - Quit, leaves this value blank

sa
Enter the maximum value for this category:

SZ

109
Select SORT option: (n,t,b,5,%)
The user 1s returned to the SORT options in order to select

another category to sort on Ir he desires. Since we are only
searching on the rile name, we will enter q to quit.

q
Write a copy of this list toafile? (y/n)

n

File: sapin.dat Created: 8/27/ 16:15
Size: 611 Status: On-line

User Cat #1: Related Analysis Program = SAP 1Y
User Cat #2: Project Number, Name, or Charge Code = Therm Stress
User Cat #3: Customer Name = Thiokol

File: sapiv* Created: 9/18/ 17:21
Size: 446228 Status: On-line

User Cat #1: Related Analysis Program = SAP IV

User Cat #2: Project Number, Name, or Charge Code = Internal
User Cat #3: Customer Name = Internal

File: sapiv.f Created: 8/28/ 13:26
Size: 401612 Status: On-1line

User Cat # 1: Related Analysis Program = SAP [V

User Cat #2: Project Number, Name, or Charge Code = Internal
User Cat #3: Customer Name = Internal

Hit <(RETURN?> to continue

Next, let's 1ist riles created auring September, are between /
and 20000 bytes long, and relate to program IMovie LKl

Select LIST option: (a,c,q)
c1
Enter the MINIMUM time: (MM/DD/YY HH:MM)

<Return>
Enter: (MM/DD/YY HH:MM) - use 14 characters to specify the earliest
time, by month, day, year, hour and minute,
enter a space instead of O where values
are less than 10, include the / and : marks.
q - Quit, setsdatetoJan 1, 1900

9/ 1/ 101
Enter the MAXIMUM time: (MM/DD/YY HH:MM)

9/30/ 23:59

Select SORT option: (n,t,b,5,#.,q)
b

Enter the minimum value for this category:

1
Enter the maximum value for this category:

20000
Select SORT option: (n,t,b,5,#,q)
1
Enter the minimum value for this category:

Movie.BYU

Enter the maximum value for this category:

Movie.BYU

Write a copy of this list toa file? (y/n)

n

File: GEOM.DAT Created: 9/18/ 17.23
Size. 3839 Status: On-Tine

User Cat # 1. Related Analysis Program = Movie.BYU
User Cat #2: Project Number, Name, or Charge Code = Wing 3.7
User Cat #3: Customer Name = Boeing

Hit <RETURN?> to continue

110

b1
EXECUTION COMMANDS

Programs can be executed: 1) by item number, Z2) by program
name, or J) by a system command.

HP 9000 Brigham Young University Software Library
1. Movie.BYU Graphics Package
2. OPTDES.BYU Design Optimization Package
3. Finite Element Modeling
4. Lumped-Mass Yibration/Modal Analysis
5. State-Space Control Systems Tools

Select DAYINC! option: (m,ix.e.*.v.q)
X
Enter the program NUMBER or NAME to execute:
<Return>
Enter: ITEM # - menu number of program to be executed
(name) - program's description code name
S - enter your own System command
g - Quit execute request

EXECUTE BY ITEM NUMBER

First move to a menu containing the program. Next,
enter the DAVINCI option, x, and the menu item number, or
simply enter the item number. For example, to run DISELAY:

Select DAYINCI option: (m,ix.e,®,v.q)
m f display
Movie.BYU Sofiware
1. DISPLAY - line drawings & continuous color output (DISPLAY)
2. UTILITY - create or edit Movie data files (UTILITY)
3. SECTION - clips and caps 3-D finite element models (SECTION)
4. COMPOSE - produce multiple image line drawings (COMPOSE)
5. TITLE - generate polygon-based characters for use in DISPLAY (TITLE)
6. MOSAIC - converts contour lines into polygon mosaics (MOSAIC)

Select MOVE option: (#,u,t,f0)

gxl

The following command is used to run program: DISPLAY
/users/terril/Dmovie/display

<MOVIE SYSTEM DISPLAY>
<READ GEOM FILE>

Hit <RETURN> to continue

EXECUTE BY PROGRAM NAME

A program can be executed by name Irom any menu In
the library. The user eénters x and the program name. Lel's
move back to the top menu and execute DISPLAY.

HP 9000 Brigham Young University Software Library
1. Movie.BYU Graphics Package
2. OPTDES.BYU Design Optimization Package
3. Finite Element Modeling
4. Lumped-Mass Yibration/Modal Analysis
5. State-Space Control Systems Tools

Select DAVINCI option: (m,i x.e,*,v,q)
X display

The following command is used to run program: DISPLAY
/users/terril/Dmovie/display

<MOVYIE SYSTEM DISPLAY>
<READ GEOM FILE>

Hit <RETURN> to continue

EXECUTE BY SYSTEM COMMAND
Any system command may bé run Irom Davincl: runhing
programs, editing rilées, or communicating with other uséers.

HP 9000 Brigham Young University Software Library
1. Mavie.BYU Graphics Package
2. OPTDES.BYU Design Optimization Package
3. Finite Element Modeling
4. Lumped-Mass Vibration/Modal Analysis
S. State-Space Control Systems Tools

Select DAYINC! option: (m,i x.e#* v.q)
X s /users/terril/Dmovie/display

The following command is used to run program: DISPLAY
/users/terril/Dmavie/display

<MOVIE SYSTEM DISPLAY>
<READ GEOM FILE>

Hit <RETURN> to continue

113

EDIT COMMANDS (Davinci and Sentinel)

Select DAYINCI option: (m,i x.e,*,v,q)
e
Select EDIT TYPE option: (m.f,c,1,r,0,0)
<Return>
m - edit Menus
f - edit a single data File*
¢ - edit data file Categories*
| - edit the Library title
r - Restore a program on-1ine
o0 - set program status: Off-line
q - Quit edit and return to DAYINC! options
*XUseq by the Davinci program only.

EDIT AMENU ITEM
Only items in the currént menu may be edited Lels insert
a new item (category) into the currént menu.

m
Enter EDIT command: (c,d,i,!.q)
<Returm>
¢ - change
d - delete
i- insert
1 - list data
q - quit edit
i
Insert after which item:
<Return>

ENTER: VYalue- Insert after this item
0 - Insert before first item
q - Quit insertion

A new item may be inserted berore or arter any existing rtem
Let's insert a category, Dynamic Analysis Package, arter item 5

5

Select MENU TYPE option: (c,p,q)

<Return>
¢ - Category, a heading to a menu below this menu
p - Program, a program or procedure you can run
q - Quit edit, return to DAYINCI options

114

| &
Enter the TITLE of this item for the menu.

0ashes show the maximum numbéer of characteéers ror text.

<Return»
Enter: (Text) - enter up to 72 characters per line,
then hit return. Enter up to 10 lines.
q - Quit, information is left blank if "g" is
entered on first line.

Dynamic Analysis Pckage

q
Edit TITLE of Item

1) Dynamic Analysis Pckage
This data OK? (y,n)

Davinci echoes recently input data to the screen ror user review
and necessary revision. Input errors may be corrected at once
Since Pckage Is misspelled, we will answer n to correct it

n
Enter EDIT command: (c,d,i,l,q)

c 1

1) Dynamic Analysis Pckage
Enter new TEXT:

Dynamic Analysis Package

Edit TITLE of ltem

1) Dynamic Analysis Package
Enter EDIT command: (cd,i,),q)

q
Enter a BRIEF DESCRIPTION of this item.

This package of dynamic analysis programs handles harmonic

response, the duhamel integral, fourier series, fast fourier

115

transform, elastoplastic behavior, frequencies and mode

shapes, and response of elastic shear buildings.

q
Edit BRIEF DESCRIPTION of Item

1) This package of dynamic analysis programs handles harmeonic
2) response, the duhamel integral , fourier series, fast fourier
3) transform, elastoplastic behavior, frequencies and mode

4) shapes, and response of elastic shear buildings.

This data OK? (y,n)'
y

HP 9000 Brigham Young University Software Library
1. Movie.BYU Graphics Package
2. OPTDES.BYU Design Optimization Package
3. Finite Element Modeling
4. Lumped-Mass Yibration/Modal Analysis
S. State-Space Control Systems Tools
6. Dynamic Analysis Package

Select DAVINC! cption: (m,i,x.e,®.v.Q)

The new category appears as item 6 in the menu. Now, /et's move
to the new menu titled, Ovnamic Analysis Package.

m 6

Dynamic Analysis Packege

Select DAYINC! option: (m,i,x.e,®.v.q)
The new menu Is empty. Lets insert program: MODS

emiOp
Enter the Program Code Name:
<Return>
Enter: (code) - use up to 9-characters for a code name of this menu item.
Menus sharing a common program should use the same code.
q - Quit, description code left blank

116

The program code name (usually Its disk rfile name) 1s used to
aistinguish between programs, to search rfor @ meny containing a
particular program (See ‘Find a Program') and to check ror other
occurences of the program. [f another program uses [hiS Name,
the user must select a different code name. A program (that
occurs several times In the menu should always use lhe same
code name, for consistency. Let's enter code name MODS.

mods

EDIT OF PROGRAM DESCRIPTION CODE

1) MODS
This data OK? (y,n)

Y
Searching for other occurences of program: MODS
Adding program (MODS) to the menu...

Appareéntly, no other menu contains a program named /No0S.

Enter the TITLE of this item for the menu.

MODS - A Dynamic Analysis Program

q

Edit TITLE of Item
1) MODS - A Dynamic Analysis Program

This data OK? (y.n)

)
Enter aBRIEF DESCRIPTION of this item.

MODS is a dynamic analysis program for problems in:

(a) HARMONIC RESPONSE (SDOF)

(b) DUHAMEL INTEGRAL - DAMPED (SDOF)

(c) FOURIER SERIES - DAMPED (SDOF)

(d) FAST FOURIER TRANSFORM - DAMPED (SDOF)

(e) STEPS - ELASTOPLASTIC BEHAVIOR (SDOF)

(f) JACOBI - FREQUENCIES AND MODE SHAPES

(g) SRESB - RESPONSE OF ELASTIC SHEAR BLDG.

Edit BRIEF DESCRIPTION of item

1) MODS is a dynamic analysis program for problems in:
2) (a) HARMONIC RESPONSE (SDOF)

3) (b) DUHAMEL INTEGRAL - DAMPED (SDOF)

4) (c) FOURIER SERIES - DAMPED (SDOF)

S) (d) FAST FOURIER TRANSFORM - DAMPED (SDOF)
6) (e) STEPS - ELASTOPLASTIC BEHAYIOR (SDOF)
7) (f) JACOBI - FREQUENCIES AND MODE SHAPES

8) (g) SRESB - RESPONSE OF ELASTIC SHEAR BLDG.

This data 0K? (y,n)

y
Enter a summary of EXTERNAL INFORMATION that pertains to this program,
including user manuals and reference files.

See Rick Balling in room 370 CB.

q

Edit EXTERNAL INFORMATION of Item
1) See Rick Balling in room 370 CB.

This data OK? (y,n)
y

Enter the SOURCE CODE location:

/users/ce/rickb
Enter the EXECUTION INSTRUCTION:

/users/ce/rickb/mods

Edit of SOURCE CODE LOCATION Description
and Program EXECUTION INSTRUCTION
1) /users/ce/rickb
2) /users/ce/rickb/mads

This data OK? (y,n)
M

Dynamic Analysis Package
1. MODS - A Dynamic Analysis Program (MODS)

Select DAYINCI option: (m,i,x.e,* v,q)

Now, let's move to the top menu and change an existing item.
mtemc®é

EDIT OF CATEGORY INFORMATION

1) Item Title (first line only):
Dynamic Analysis Package
2) Brief Descripticn of [tem: (first line only)
This package of dynamic analysis programs handles harmonic response

Change WHICH item:

118

Only the rirst line of multi-/ine Information Items appear in the
/1St, but all lines appear when eaiting Let's change the title of

this 1tem to Dynamic Analysis Software.
I

Edit TITLE of item
1) Dynamic Analysis Package

This data0K? (y,n)

n

Edit Command: (c,1,q)
c 1

1) Dynamic Analysis Package
Enter new TEXT:

Dynamic Analysis Software

119
/f we had entered gq, the litle would have remained unchanged

Edit TITLE of Item
1) Dynamic Analysis Software

Edit Command: (c,i,q)
q

EDIT OF CATEGORY INFORMATION
1) Item Title (first line only):
Dynamic Analysis Software
2) Brief Description of Item: (first line only)
This package of dynamic analysis programs handles harmonic response

Change WHICH item:

We could change another item, but instéead we will entéer q lo
quit, ana use EDIT command a to gelete an item in the top menu
qd

Delete WHICH item?

6

Delete this item? (y/n)

Davincli makes Ssure that the user wants to aelete this irtem
This requirés an adaitional response, bLut heips protect against
accraental aeletions. The user may not delete a category (that
Still contains items. We enter n to avoid aeleting this item.

n

Enter EDIT command: (c,d,i,!,q)

The list command give the same 1isting as the change command

16
LISTING OF CATEGORY INFORMATION

1) Item Title (first line only):
Dynamic Analysis Software
2) Brief Description of Item: (first line only)
This package of dynamic analysis programs handles harmonic response

Hit <RETURN> ta continue

120

EDIT ADATAFILE

This option Is avallable only with the Davinci program.
The other programs, Sentinel! and Galeway, do not categorize
data riles. When the user enters the command (o edil a agala
rile, he will be prompted ror the name of the rile as rfollows:

Select DAVINCI option: (m,ix.e,®,v,0)
ef
Enter data file name (15 CHARS MAX)

<Return>

Enter: (name) - Enter the name of the data file to be worked with. The
name can be up to 8 characters in length. The first
character must be a letter (A-Z). The other characters
can be letters (A-Z), numbers (0-9),0r symbols §,# @

1 - Listout all current data file names on record
q - CQuitedit and return to main options

Dfortran/, Disp11, Disp12, Disp13, Dobject/, GEOM.DAT, filmen, prob3.2.in,
prob3.2.out, prob6.4.in, prob6.4.out, prob6.4.0ut2, sapin.dat, sapiv*,
sapiv.f, xxfile, zfilez

Enter data file name (15 CHARS MAX)
Lel's edrt the inrormatlion con the dala rile GFOMPAT.
GEOM.DAT

Edit of DATA FILE
File Name: GEOM.DAT

Status: 1) 0
Backed-Up Location: 2) (Does NOT Apply!)
User Category #1: 3) Related Analysis Program = Movie.BYU
User Category #2: 4) Project Number, Name, or Charge Code = Wing 3.7
User Category #3: S5) Customer Name = Boeing

This data OK? (y,n)

Data riles are ciassiried according to name, time of créeation,
si1ze, Status and the Six possible user-derined catégories.
Because the name, time of créeation, and size are set values,
they do not appear in the above /isting as items to be edited

121

The backed-up Jocation information only applies to files whose
status 1s B, backed-up. Wwhen the status 1s O-on-/ine, or
T-temporary, the message '(goes not applv)” 1s written. Let's
change the status rfrom on-1linée to temporary.

n
Edit Command: (c,1,q)
cl

10
Enter new TEXT:

t

Edit of DATA FILE
File Name: GEOM.DAT

Status: 1) T _
Backed-Up Location: 2) (Does NOT Apply!)

Edit Command: (c,1,q)

Data riles whose status is temporary are not classiried by the
user-agefined categoriés. However, when a préviously
unclassiried aata rile whose status was lemporary 15 changed
to on-line or backed-up, the user-defined category [3bels will
appear and the user can edit this information. [an attempt 15
made to change the status to something other than O-on-/ine,
T-temporary, or B-backed-up, the status will be set to a
gerault value of T-temporary. Let's change the status back (to
on-line.

clogq

EDIT USER-DEFINED CATEGORY LABELS

Davinci allows up to Six user categories [for classifving
agata riles (See “Initialization of Data Files ") These
categories or category /labels are set up when Davinci 1s run
for the [rirst time. The user may redefine these category
labels using the change, aelete, and insert cemmands. Leét's
nsert a new category Jlabel arter category 2

Select DAYINC! option: (m,i.x.,e,* v.q)
ecC

Edit CATEGORIES for Data File

1) CATEGORY: Related Analysis Program

2) CATEGORY: Project Number, Name, or Charge Code
3) CATEGORY: Customer Name
This data OK? (y,n)
n

Enter EDIT command: (c,d,i,1,q)
i2

Insert after item # 2) Project Number, Name, or Charge Code
Enter new TEXT:

Product Number- or Name

Edit CATEGORIES for DataFile

1) CATEGORY: Related Analysis Program

2) CATEGORY: Project Number, Name, or Charge Code
3) CATEGORY: Product Number or Name

4) CATEGORY: Customer Name

Enter EDIT command: (c,d,i,l.q)
q

How many character are needed for category #3
(Product Number or Name)

25 columns are available!

Enter YALUE:

122

Davincl will prompt the user rfor the number of columns needed

to store aata ror each new category.

Next, Davincr

willl

prompt the user for the information on each category ror each
agata rile. Up to this point, 47 of the 72 columns avallable ror

the user-aerined category Information are being used
use 15 more columns or the remaining 25 ror this category.

15

we wil/

123

Please Enter Info for Category #3
(Product Number or Name)
For each of the following data files:

Category Info for Data File: Dfortran/

XP 34.900

Category Info for Data File: Dispi1

XP 55.433

EDIT OF LIBRARY TITLE

The library title is the title or the top menu 7he
proceaure ror earting this titie 1s the same as changing the
information on a menu item or a user-agerined category label

EDIT OF PROGRAM STATUS

A program may have on-liné or off-/iné status. The
S§tatus s changed by using the EDIT TYPE options r and o. The
option r Is used to restore a previously backed-up program
on-line and the option o IS used lo change the status (o
orr=I/inée when a program has been backea-up. 7o edart the
program status using the r and o commands, (the user must
rirst move to the menu containing that program. Let's move (o
the menu containing program MODS and try out these commands,

Select DAVINC! option: (m,ix.e,®.v,Q)
mb6eo

Save WHICH item Off-1line:
1

MODS - A dynamic analysis program

See Rick Balling in room 370 CB.
Source Code Location: /users/rickb/Dmods

124

The tape drive is located in room 317CB. Use the
TAPECOPY command to work with foreign tapes and
the COPY command to work with YAX ANS| tapes.
Hit <RETURN> to continue

EFach time the program status 1s changead, the user I1s given
rererence information, the program source coade location, and
instructions ror handling (apes.

DAVINCI OPTION - *

When the user inputs a category item number, Davinci moves to
the menu of that category. When a program item number is entereq,
Davinci executes the program. This option is shown in sections "Move to
Item Number” and "Execute By |tem Number.”

VERIFY COMMAND (Davinci)

When the user first executes Davinci, new data files are
classified automatically. This option provides the user the ability to
verify data file information and categorized new data files as they are
created during the execution of programs containecd in the Davinci
library. The procedure for classifying new files using this option 1s the
same as that described in the section titled "ZFILEZ Data Files.”

QUIT

The Davinci option @q is used to quit Davinci execution At
other input levels, the quit option g is used to quit an option or leave
information blank. Let's enter g to terminate the Davinci program.

Dynamic Analysis Software
1. MODS - A Dynamic Analysis Program (MODS)

Select DAVINCI option: (m,ix.e,#® v.a)
q

FORTRAN STOP

$

125

INITIALIZATION OF DATA FILES

The first time Davinci and Sentinel are executed, the user will
be prompted for information needed to set up data files ZFILEZ and FILMEN.
This initialization occurs after the program header is displayed.

ZFILEZ DATAFILE

File ZFILEZ (Davinci only) stores Information used (o
classity data riles. A short agescription of how aata riles are
categorized Is given and the user Is prompted [ror the [irst
user-aefined category /abel

DAYINCI manages both program and data files. Data files are categorized by

name, creation time, and size automatically. You may also specify up to Six

categories of your own to help organize and keep track of your files. Use all
6 categories if you like, but remember that each time a file is created, you

will be prompted for informaticn on each category. A total of 72 characters
are available for the information in the user -defined categories.

Enter the label for category # 1

<Return>
Enter: (name) - enter up 1o 40 characters to specify a category
label (i.e. SIZE, CLASS, PURPOSE, etc.).
q - Quit, finished entering category labels

Davinci allows up to Six user-defined categories to cl/assify
aata riles For example, under catéegory ‘Related Analvsis
Frogram', the user might enter MNMovieSYU" ror a dala rile used
by Movie. ‘Relaled Analysis FProgram” 18 our First category.

Related Analysis Program

How many characters are needed for category # 1
(Related Analysis Program)
Enter YALUE:

JFILEZ stores the user-dgefined — category information,
Movie BYU', etc, in a 72 character string The user divides (the
72 avallable columns among the user-aefined categories. We
will allocate 15 columns ror category “Related Analvsis
Progranm’,

126

15
Enter the label for category # 2

Lets enter two more categories, ‘Project Number, Name, or
Charge Code” and ‘Customer Name" and allocate 12 and 20
characters respectively.

Project Number, Name, or Charge Code

How many characters are needed for category #2
(Project Number, Name, or Charge Code)
Enter VALUE:

12

Enter the label for category # 3

Customer Name

How many characters are needed for category #3
(Customer Name)
Enter YALUE:

20

Enter the label for category # 4

q

Please be patient and wait while data file information is input...

we entered q when prompted ror the rourth categorv
label to quit the input of categories.

Arter initializing a@ata [rile ZFILEZ Davinci uses the
multi-tasking capability of the computer to view the current
airectory and writes a adata rile XXFILE containing the name,
time of creation, and size of these [iles. Because this operation
may take some time to complete lhe usér is asked to wait. This
also serves to ease the mind of the user who may become
worried that something has gone wrong.

Davinct then compares the /ist of File names i1n XXFILE
to those in ZFILEZ Data riles gppearing In XXFILE and net in
JFILEZ have been created since the 1ast execution or Davinci and

123

therefore need to be classified The [irst time Davincl 15
executed all data riles need to be classified

Davincl takes each [rile in the current directory and
asks the user If 1t 1s a temporary [rile. /I the user intends (o
classify a particular [rile using the varlous user-aerined
categories, he should enter n. I the File 1s only temporary and
therefore not to be classiried, he should enter y. When a agala
file 1s to be classified the user 1s askea Lo enter he
information reégarding each or the user-defined calegories. As
all of the data riles iIn the current directory will be c/assified,
we will proceed by entering the necessary Information on each
of the riles as prompted by the program. Only the rirst rew wil/
be shown.

A new file: Dfortran/ is found in your directory
Is this a temporary file? (y/n)
<Return>
Enter: y - to avoid entering data file category information
n - this file is permanent and needs 1o be classified
using the data file categories
n
Please enter info for Category: Related Analysis Program

<Returnm>
Enter: (info) - enter up to 15 characters to specify the category information
q - Quit, information left blank

SAP |V
Please enter info for Category: Project Number, Name, or Charge Code

wing 3.7

Please enter info for Category: Customer Name

Internal

A new file: Displ1 is found in your directory

Is this a temporary file? (y/n)

n

Please enter info for Category: Related Analysis Program

SAP |V

128

Please enter info for Category: Project Number, Name, or Charge Code

wing 3.7
Please enter info for Category: Customer Name

Boeing

A new file: Disp12 is found in your directory
Is this a temporary file? (y/n)

Note that dashes Indicate the number of characters
available ror each category.

when new data riles are found auring Ssubsequent runs
of the Davinci program, the user will be given prompts i1dentical
to those just Illustrated Davinci also detects when riles have
been aeleted, ana allows (he user to store the /ocation of the
backed-up rile

FILMEN DATA FILE

Davincl and Sentine! will ask the user to enter a new
library title (for top menu) when it initializes data rile FILIEN,
which 1s used to store the /ibrary menu structure and program
Information.

Enter New LIBRARY TITLE:

Sample Run Program Library

EDIT OF LIBRARY TITLE

1) Sample Run Program Library
This data 0K?

b 4
Sample Run Program Library
Select SENTINEL option: (m,i x.e,*.v,q)

The user can set up a library or programs using the eait
commands described previously. For more information on ZFILEZ
and FILIMEN riles, see the “Programmer [nformation” section.

129

Il. PROGRAMMER INFORMATION

Program Organization

Davinci, Sentinel, and Gateway routines are listed by functional

categories in Table B.2. The relationship between the routines is shown in
Table B.3. A brief statement of the function of each subroutine is shown
in Table B.4.

Table B.2 ROUTINE FUNCTION LIST
Command Data Set Operator Character Data Struct
ADD** CHXSTRX* ERROR BNDSTR GETAVL**
BACKUP** DUMP»* SQUIRE TXTOUT GETREC
CHANGE»¥* FILCMP* ZHELP UPCASE PUTAVL**
EXE FILDIR* PUTREC*
FILEDT* FILLIS* SAVAVL**
FIND FLINIT%
INFO GETDAT»* Routines marked with * are used
KILL* GODAD only by Davincl, routines marked
LIST*% GOSON with ** are used by Davinci and
TRAVRS Sentinel only.
Table B.3 - DAVINCI SUBROUTINE MAP
E AR 2253 [S X
1
Tn;ﬁ] [Fino | | ADDJ [error | [inro |
[rumv] | r||.nm| [FiLCHPI [purnccl [Gnnfc | LGETAVL[
1 1 1 1 {]
DAVINCI

[nuLp[

i
:
A

|GODAD|

| FiLeot| | | savavi]

s

B
]

GETREC [
PUTREC

ERROR

GETREC
TXTOUT
BNDSTR

PUTAYL
SAYAYL
ERROR
ERROR
GETREC
BNDSTR
FIND
ERROR
GETREC
PUTREC
CHXSTR

ADD
BACKUP

BNDSTR

CHANGE

CHXSTR
DUMP

ERROR
EXE
FILCMP

FILDIR

FILEDT
FILLIS
FIND
FLINIT
GETAVL

GETDAT
GETREC
GODAD
GOSON
INFO
KILL
LIST

PUTAVL
PUTREC
SAVAVL
TRAVRS
TXTOUT
UPCASE
SQUIRE
ZHELP

130
Table B.4 - Subroutine Description

Creates new program and category menu items

Keeps track as programs are moved on and of f-line by
setting/clearing the flag that indicates program status
Bounds a character string and returns the position of the first
and last character in the string

Changes an item in the menu by displaying all the information
about that item and prompting for instructions

Changes a multi-line text entry (1 or more records)

Outputs the entire FILMEN data file with record numbers
appearing in front of each record

Displays one line error messages

Finds, runs the execution instruction for a program.
Compares current data files to files stored in ZFiLEZ in
search of new files to be classified

Extracts information about the current files in the directory
such as name, time of creation, and size

Editing of data file information, user-defined categories
List data file information according to user specifications
Finds record number of a program and moves to that menu
Initializes direct access file to store data file information
Finds next available line in data file, if vaiue read is zero,
GETAVL becomes AVAIL + 1 (GETAVL is an integer function)
Asks for info necessary to add a program, category menu item
Retrieves a C or F record from the data file

Calls TRAVRS to path up one level

Moves to the menu specified by entering the category numbper
Lists brief description of a menu item or reference summary
Deletes a program or category menu listing

Creates an ordered listing of library menu structure as
contained in FILMEN data file, writes it to a disk if desired
Stores in record the record number of next availabie record
Adds a C or F record to the data file

Saves pointer to first empty record, max record pointed to
Displays menu corresponding to CURDAD

writes out strings for title, description, reference summary
Translates a character from lower to upper case, if needed
Library of input/output routines for user interaction
Input/output help routines called by SQUIRE routines

Data File Structure

DavinciBYU uses two direct access disk files, FILMEN and
ZFILEZ. FILMEN contains menu data and is used to classify programs.
ZFILEZ stores data file information and is used to classify data files by
name, time of creation, size, status, and six user-defined categories. A
brief description of each data file follows.

FILMEN Data Structure

The programmer may produce a sequential file containing FiLMEN
information using the d option (for "dump”) in the main level of Davinci or
Sentinel. The data file FILMEN used in the sample execution appears in
Table B.5.

Read and write statements used with a direct access file can
reference any record in the file directly, without having to read all the
preceding records sequentially. Records in FILMEN are linked by a system
of pointers that maintain relationship between menu items.

Records are linked in a tree structure, similar to a "family tree.”
A menu category stands as the head of a fimily of subtopics. The menu
heading is the "Dad”, the subcategories are the "Sons” or "Brothers.”
when the user paths down to the next menu, that "Son" becomes the "Dad”
over the next group of subcategory "Sons.”

There are seven types of data records in the FILMEN. Each type
is indicated by the first character field in the record (B, C, D, E, F, i, or N).
These record types may be grouped in two classes, corresponding to two
different record formats: 1) Master records, and 2) Data records (see
Table B.6).

Every menu item has a master record and several associated
data records (see Table B.7). For example, lines 2, 12, 21, etc. of the above
FILMEN sample listing are Master records. The seven pointers iink each
item to the library tree structure and to its associated data. If the record
type 15 F, such as line 40, these records aiso contain the source code
location and program code name.

132

Table BS - FILMEN SAMPLE DATA FILE

Select DAYINCI option: (m,i,x.e,#¥,v,q) The record numbers at the lert

d help the user follow pointeérs,
Write a copy of this listtoafile? (y/n) and do not appear in aata rile.

n This adump option may help in
1 638638 searching ror errors.

2000122003

3N O 1HP 9000 Brigham Young University Software Library

4D 0 1Movie.BYU Graphics Package

S| 6 1The MOVIE system of general purpose computer graphics programs
61 7 1facilitate the display of three-dimensional, topological, and

71 8 larchitectural models as line drawings or as continuous tone shaced
81 9 limages. This software also provides the capability to clip and ca

91 10 Ithree dimensional systems; modify geometry, displacement, and/or s
101 11 1function files; generate new models or title representations; and
111 O teonvert contour line definitions into polygonal element mosaics.
12C 02125 2 5 0 4

13D 0 10PTDES.BYU Design Optimization Package

141 1S 1The OPTDES.BYU package was developed to assist the engineer in obt
151 16 lefficient designs. In particular, the package helps the engineer

161 17 1perform the following fundamental tasks in the design process:

1 18 1% (1) Interfacing with existing analysis software
181 19 1 (2) Defining and redefining the design problem

191 20 1 (3) Searching for improved designs

201 01 (4) Interpreting results from the design process

21C 0576151 214 0 13

22D 0 1Movie.BYU Software

23| 24 1This category contain the various program that form Movie.BYU:
241 0 1Display, Utility, Section, Compose, Title, and Mosaic

25C 0 28 40 12 23 0 22

26 D 0 1Documentation

271 0 1This category contains documentation for the Movie.BYU programs.
28C 0 31282 12 27 0 26

29D 0 1Demos

301 O 1This category contains demonstrations of the various Movie softwar
31C 0 0108 1230 0 29

32D 0O 3DISPLAY - line drawings & continuous color output

33| 34 3DISPLAY is an interactive program for the display and animation of
34| 35 3mode! composed of polygons. The program allows the user to manipu
351 36 3the model (rotate, translate, etc.), specify colors for the backgr
361 0 3and the different element parts, and select the display device.

371 0 3See the documentation section and demo section of the MOVIE menu.
38D 0 1Multiview (COMPOSE) output showing primatives from UTILITY
39E O 3/users/terril/Dmovie/display

40F 37 52 0 25 33 39 32/terril/Dmovie/Dfortran/command.f hidden.fDiS

Hit <cRETURN> to continue

133

Table B.6 FILMEN DIRECT ACCESS RECORD TYPES

Master Records
C (Category)
F (File)

Data Records
B (Backed-up)
D (Description) Title of menu item
E (Execution)
I (Information) Brief Description, Reference Summary of Menu item
N (Name)

Heading to a submenu
Program menu item

Location of tape, etc. of program
Program execution statement

Name of the Library

Table B.7 FILMEN DIRECT ACCESS RECORD FORMAT

A. C and F Record Pointers and Text (Master Records)

FORMAT(A1,714,A42,A9)
Description
Type of Record in Data File
External Reference Summary of Menu Item
Brother
Son
Dad
Brief Description of Item
Program Execution Statement
Title of Menu Item
Location of Program Source Code
Program Description Code Name

B. B, D, E, I, and N Record Pointers and Text (Data Records)

Column Variable
] TYPE

27D POINT(1)
6-9 POINT(2)
10-13 POINT(3)
14-17 POINT(4)
18-21 POINT(5)
22-25 POINT(6)
26-29 POINT(7)
30=71 TEXTI
72-80 TEXT2

Column Variable
| TYPE

2r5 POINT2(1)
6-8 POINT2(2)
9-80 TEXT

C. Unused Records

Column Variable
1-4 AVAIL
5-8 SPAVAL

FORMAT(A1,14,13,A72)
Description
Type of Record in Data File
Record number of next line of string
Usage Count, number of items using this string
Information (Title, Brief Description,
External Reference, or Execution Statement)
FORMAT(214)
Description
Line number of first available record
Highest record number used (record | only)

134

when a menu item is selected, Davinci retrieves the master
record of the corresponding son. This becomes the "new Dad”. POINT(3)
gives the location of the master record of the new dad's eldest son.
POINT(2) gives the location of the next son (brother). The chain is
followed until a zero is found in POINT(2), indicating no more brothers.
As each brother's master record is retrieved, the corresponding menu
name is accessed using POINT(7) and the text contained in that data
record is displayed.

The MOVE, INFORMATION and EXECUTION options occur similariy.
when a program is executed, the command, found by foliowing POINT(6),
is also sent to the operating system as a command string.

Data records contain text data such as the titie, brief
description, reference summary, etc. (see Table 7B). Lines 3, 4, S, etc.
are data records. POINT2(1) is used to point to the next record of
mult-line information items (i.e. Titles, Brief Descriptions, and External
Reference Summaries). The 1ast line of an information item is identified
by POINT2(1) equal to zero. POINT2(2), the usage counter, counts the
number of times the program associated with this information appears in
the library menu structure. If a program is listed in more than one menu,
it will have a separate master record for each menu in which it appears.
The pointers, however, will all point to the same data records
POINT2(2), therefore, is used to indicate the number of master records
that refer to this data. When a program or category is deleted from a
menu, the master record and all associated data records are deleted.
However, if POINT2(2) is greater than one, the data record will not be
deleted. Instead, the usage counter is reduced by one.

Empty records contain a pointer, AVAIL, which points to the
next available record (see Table 7C). Since all the data records are of
fixed length, deleted records may be reused. When a data record is
deleted, the location of the deleted record is stored in AVAIL to be used
by the next record added to the file. When several data records are
deleted, a system of pointers is set up forming a chain of unused records.
The last record in the chain is the record at the end of the disk file. The
pointer SPAVAL points to the highest record number used (record | oniy).

ZFILEZ Data Structure

Data file information is stored in the data file ZFILEZ. The
[FILEZ data file used in the sample execution of the user's guide
information appears below.

Table B.8 ZFILEZ SAMPLE DATAFILE

1 83 83 4 17 9
2 115162728424362 0000

3 Related Analysis Program

4 Product Number, Name, or Charge Code

S Project Number or Name

& Customer Name

7
8

9 Dfortran/ 84/9/17 12:33 110

10 27365AP IY Wing 3.7 XP 34.900 Internal

11 Displ1 84/9/18 17:24 130

12 2409SAP 1Y Wing 3.7 XP 55433 Boaeing

13 Displ12 84/9/18 17.24 150

14 24095AP 1Y Wing 3.7 XP 44.672 Boeing

15 Disp13 84/9/18 17:24 17BDRAO:[ME.ROSS.FORMAT]
16 2409SAP IY Wing 3.7 XP 33,981 Boeing

17 Dobject 84/ 7/26 12:49 19T

18 372

19 GEOM.DAT 84/9/1817:23 210

20 3839Movie.BYU Wing3.7 MV 349 Boeing

21 filmen 84/ 7/1213:18 230

22 4894Davinci.BYU internal Internal Internal

The récord numbers in the /ert column
were adaoed to help the user

The format of this data file consists primarily of two parts:
the header and the data file information (see Table B.8). Record | stores
the location of the next empty record, the bottom most empty record, the
number of user-defined category labels, the number of data files in the
list, and the record number of the first data file. The second record of the
header keeps track of the beginning and ending column numbers of the
user-defined category information. The user can define up to six
categories for classifying data files and must specify the number of
columns (72 available) to contain each category's information. Records
3-8 store the user-defined category labels (up to 40 characters each).

136

The second part of ZFILEZ contains the data file information (2
records per file). Record a contains the name of the file, its time of
creation, the location of the next file in the list, and the file status,
including the location of the file, if backed-up (see Table B.9). The fiie
Disp13, record 15 of the above ZFILEZ sample listing, is a backed-up file
whose location is [ME.ROSS.FORMAT]. Record b, contains the size of the
file, and the category information for each of the user-defined categories.
When a file's status is T-temporary, as is the case with the file Dobject at
record 17 of the above listing, it is not classified using the user-defined
categories. The ZFILEZ data file is only used by Davinci. Sentinel and
Gateway do not classify and organize data files.

Table B.9 - ZFILEZ DIRECT ACCESS RECORD FORMAT
A. Header
Record No.1 FORMAT(414,38X,14)

Column Variable Description

1- 4 AVAILF Location of next empty record

>- 8 AVLFMX Location of bottom most empty record

9-12 NUMCAT Number of User-defined Category labeis
t3=16 NUMFIL Number of data files in the list
9958 LOCRCI Location of the first file in the list

Record No. 2 FORMAT(1213)
1-36 IFLLOC(2,6) Beginning ending column *'s for user categories

Record No. 3-8 FORMAT(A40)
1-40 FLABEL(6) User-defined Category labels

B. Data File Info
Record a FORMAT(A40,A14,14 A1 A21)

1-40 FNAME Up to 40 character filename
41-54 FTIME Time file was created
55-58 LOCNEW Location of next data file in the list
59 STAT File status: on-1ine(0), temp.(T), backed-up(B)

60-80 LOCBAC Location (tape ID, etc.) fo backed-up file

Record b FORMAT(18,A72)
- 8 LENGTH File size
9- 80 REC 2 Information for user-defined categories

APPENDIX C

SQUIRE PROGRAMMING GUIDE

138

Squive.BBTU

Programming Guids

Brant A. Ross
College of Engineering
Brigham Young University
Provo, Utah 84602
December 5, 1984

Squire.BYU is a library of Fortran subroutines & functions that:
e creates a consistent interactive environment for users
e provides an arbitrary number of levels of prompts for new users
e allows experienced users to type-ahead answers
e saves programming time on input, editing, & disk access functicns.
e ailows programmer flexibility.

Neither Brigham Young University nor its employees makes any warranty
expressed or implied, or assumes any legal responsibility for the accuracy,
completeness or usefulness of this computer program or its associated
documentation. Readers are reminded that the information and ideas
contained in this document are the property of Brigham Young University and
may not be used without permission.

139

TABLE OF CONTENTS

Page
Sample Use of the SquirelLibrary.......................... 140
BUftering of COMMANAS:o s svpwmn wsmsismn ene s 146
Multi-Level Prompls cosavcen v cam s s s vsreiess swsea 146
Creating Prompt Routinesl 146
System Depententles ouwuvs is vus i s v i ik e o & 147
Use of External Statement 147
Redirecting Input and Qutput 147
IBEOrNEl ROULINESo cocvonn srinm snass D08 6o o0 ol 09 caues 148
RESOTVEd NBMESo: o5 o iamnd wveise® s mes 5o8 v s ooy i s 149
ININTQ - Input an integer value with muiti-ievel prompts...... 150
QINREL - Input areal value using multi-level prompts.......... 151
QRDWRD - Input a single word using multi-level prompts....... .. 152
QTXTIN - Input a line or phrase using multi-level prompts....... 153
QEDFIX - Edit fixed combination of real, integer, text items..... 154
QEDINT - Edit a variable length array of integer numbers........ 156
QEDREL - Edit a variable length array of real numbers.......... 157
QEDLIS - Edit variable length real, integer, text arrays......... 158
INWRDQ - Match input to one of various command words 160
MENUSQ - Match input to one of various command letters........ 161
QYESNO - Ask user ayes/noquestion 162
QFILRD - Asks for file name and opens file forinput 163
QFILWR - Asks for file name and opens file for output 163
QCLEAR - Clears screenand putscursorattop................. 164
QINIT - Initializes Squire input bufferand flags.............. 164
QMETRC - Asks user if english or metric units areused......... 164
QMORE - Used to suppress output when user types ahead 164
QPAUSE - Pauses and waits for return key to continue 165
QSYSTM - Executes a system (monitor) command............... 165

QTERM - Asks user to specify terminal attributes............. 165

140

Sample Use of Squire Libr

This section contains a samplie execution of a subroutine with
some of the input/editing features of the Squire Library. Squire uses
multi-level prompts and command buffering to accomodate varied user
capabilities. The first level prompt is terse for the expert user, the
second level is a fairly complete description, and the third level suggests
a response. The second and third level prompts are shown when the user
hits the return key. The expert user may answer questions ahead by
placing the appropiate responses on a single line, separated by spaces.

Comments shown in 7¢a//¢s do not appear on the terminal screen
but have been added here for description purposes. User input is shown in
bold to make the session easier to understand.

Insertion of a new element type: (Message given to user when
Enter the IGES topology number: entering subroutine)
<return>

The IGES tapology number specifies the number of nodesand (2nd /evel grven when

their arrangement in elements. The topology types (withthe wser h/ts return)
the number of nodes in parentheses) are:

1. Beam (2) 2. Triangle (3) 3. Triangle (6)

4. Triangle(9) S. Quad (4) 6. Quad (8)

7. Quad(12) 8. Thk Shl Wedg(12) 9. Thk Shi Wedg(18)
10. Thick Shell(16) 11. Thick Shell(24) 12. Solid Tetra(4)
13. Solid Tetra(10) 14. Solid Wedge(6) 15. Solid Wedge(15)
16. Solid Wedge(24) 17. Solid Brick(8) 18. Solid Brick(20)
19. Solid Brick(32) 20. Axisym Line(2) 21. Axisym Line(3)
22. Axisym Line(4) 23. Axisym Tria(3) 24. Axisym Tria(6)
25. Axisym Quad(4) 26. Axisym Quad(8)

6

Selected IGES Element Type: PQUAD - Parabolic Quadrilateral
Element contains 8 nodes.

This data OK? (y,n)

y

CPS8BRT2
Enter the Description for this element type

Enter the Name for this element type

<returnm>
Enter: text- description for this element type, such as
"Axisymmetric Fluid Element of Three Nodes."

q - Quit option

141

Plane Stress, Quad Disp/Lin. Temp, Red. Int. - Abaqus

Beginning at local node # 1....
Enter the node numbers corresponding to IGES numbers:
15263784

Edit of an element type... (Edit of a lixed combination of data)

1) Name: CPS8RT2
2) Description: Plane Stress, Quad Disp/Lin. Temp, Red. Int. - Abaqus

Node number map to IGES topology:

3)1 45 5)2 6)6 7)3 8)7 9)8 10) 4
This data 0K? (y,n)

n

Edit Command: (c,1,9)
C

Change WHICH item:
9

ITEM# 9 = 8
Enter NEW VYalue:

4

Edit of an element type...

1) Name: CPS8RT2
2) Description: Plane Stress, Quad Disp/Lin. Temp, Red. Int. - Abaqus

Node number map to IGES topology:

3)1 4)5 5)2 6)6 7)3 8) 7 9) 4 10) 4
Edit Command: (c,1,q)

cl08 (answer questions ahead the 2nd time around)

Edit of an element type...

1) Name: CPS8RT2
2) Description: Plane Stress, Quad Disp/Lin. Temp, Red. Int. - Abaqus

Node number map to IGES topology:

3)1 405 S)2 6)6 7)3 87 94 10) 8
Edit Command: (¢,1,9)

q

142

The subroutine used for the sample execution is listed below,
with accompanying prompt subroutines.

SUBROUTINE INSERT(AVAIL,IPOINT ,JPCINT,IGSMAP ,IGSNOD,IGSLAB ,NODPNT)
C****************************i*******i***************************
C Insert an element type into the file.

C

C Arguments:

C AVAIL - Next available record in zfilez.dat

C IPOINT- Start pointers to elements with N nodes.

C JPOINT- Start pointers to elements with IGES topology K.

C IGSMAP- Topology map between thsi element and IGES topology.
C TEXT(1:15) -Name of element.

C TEXT(16:72) -Element Description.

C IGSLAB- Label for each IGES Element Topology Type.

C IGSNOD- Number of Nodes in Each IGES Element Topology Type.
C Important Internal Yariables:

C

C Called by: main
C Calls: QCLEAR
Ci****i*ii**************************!**I*l******i*************ii*
COMMON /ELEDIT/ NNODEE
COMMON /I10DEV/ IDSK
INTEGER AVAIL
CHARACTER TEXT*72, IGSLAB(26)*40
DIMENSION IPOINT(14), JPOINT(26), IGSMAP(32), IGSNOD(26),
1 NODPNT(32), ITCNT(2)
LOGICAL QYESNO, QTXTIN, QMORE
EXTERNAL ZENAME, ZEDESC, ZIGEST, ZTMAP, QED7, ZEDIT
DATA ITCNT/15,57/

C
WRITE(*,%) * Insertion of a new element type:'
DOS1=1,32
I6SMAP(1) =0
S CONTINUE
€

C Ask for the IGES topology type of the element to be insert.
10 IGEST = ININTQ(ZIGEST,1)
IF(IGEST.EQ.-99999) GO T0 900
IF(IGEST.LT.1.0R.IGEST.GT.26) THEN
WRITE(*,15) IGEST
15 FORMAT(/* Sorry..." 13," is not a valid topology type')
60TO 10
END IF
C
C Echo information about this IGES element type, ask if OK.
NNODE = IGSNOD(IGEST)
WRITE(*,20) IGSLAB(IGEST), NNODE

143

20 FORMAT(//" Selected IGES Element Type: ' ,A40/
] " Element contains',|13," nodes.’)
IF(.NOT.QYESNO(QED7)) GO TO 10
C
C Ask for the element type name
CALL QRDWRD(TEXT(1:15),15,ZENAME)
IF(TEXT(1:15).EQ." ') 60 T0 900
C
C Ask for the element description (up to 57 characters)
IF(.NOT.QTXTIN(TEXT(16:72),57, ,ZEDESC)) GO T0 900
()
C Ask for Node number mapping between IGES connectivity and
C element connectivity.
DO S0 J=1,I1GSNOD(IGEST)
IF(QMORE(IDUMMY)) WRITE(*,25) J
25 FORMAT(/' Beginning at local node #°,12,"....")
30 IGSMAP(J) = ININTQ(ZTMAP - 1)
IF(IGSMAP(J).LT.1.0R.IGSMAP(J).GT.IGSNOD(IGEST)) THEN
WRITE(*,40) IGSMAP(J)
40 FORMAT(/' The node number: *,12," is out of bounds')
G0 TO 30
END IF
50 CONTINUE
C
C Let the user review the data before putting it into the file.
NNODEE = NNODE
CALL QEDFIX(ZEDIT, 1,A, NNODE,IGSMAP, 72,TEXT, 2,ITCNT,
1 0,0, 3,NNODE+2, 1,2)
C
C File (i) needs to be inserted into the data set.
C Find the location of the next empty space after AVAILF.

C
C Write info for this file at location specified by AVAIL.

c
900 RETURN
END

SUBROUTINE QABORT(LEVEL)
WRITE(*,10)

10 FORMAT(" Contact your local CAESO representative.’)
STOP
END

144

SUBROUTINE ZEDESC(LEVEL)
C Calledby: (main)
00 70 (20,40,50,10), LEVEL
10 CALL QABORT
20 WRITE(*,60)
30 RETURN
40 WRITE(*,70)
60 T0 30
S0 WRITE(*,80)
60 TO0 30
60 FORMAT(/' Enter the Description for this element type'/S7('_'))
70 FORMAT(' Enter: text- description for this element type, such as'/

2) “Axisymmetric Fluid Element of Three Nodes.™/
3) q - Quit option'/57("_"))
80 FORMAT(' Why not enter: g NO further help!’)
END

SUBROUTINE ZEDIT(A,IGSMAP , TEXT)
C Called by: INSERT ,CHANGE
COMMON/ELEDIT/NNODEE
DIMENSION A(1),IGSMAP(1)
CHARACTER*72 TEXT
WRITE(*,10) TEXT(1:15),TEXT(16:72)
10 FORMAT(' Edit of an element type..."//

1 ‘1) Name: 'A1S/

2 " 2) Description: *AS7//)
WRITE(*,*) ' Node number map to IGES topology:'
WRITE(*,20) (J+2,IGSMAP(J) J=1 NNODEE)

20 FORMAT(8(3X,12,),13))
RETURN
END

SUBROUTINE ZENAME(LEVEL)
C Calledby: (main), GETDAT
60T70(20,40,50,10), LEYEL

10 CALL QABORT
20 WRITE(*,60)
30 RETURN
40 WRITE(*,70)
G0 TO 30
SO0 WRITE(*,80)
G0 TO 30
60 FORMAT(/' Enter the Name for this element type')
70 FORMAT(Enter: text- name for this element type, such as QUADS '/
2 CAX8R, CELASZ2. These names should be recognized'/
3 ' by the target FEA codes (Abagus, Nastran, SAP).'/
4 ‘ q - Quit option'/’ ")

80 FORMAT(' Why not enter: q NO further help!’)
END

145

SUBROUTINE ZIGEST(LEVEL)
C Called by: (main)
60 T0 (20,40,50,10), LEVEL
10 CALL QABORT
20 WRITE(*,60)
30 RETURN
40 WRITE(*,70)
WRITE(*,75)
G0T030
50 WRITE(*,80)
60 T0 30
60 FORMAT(" Enter the IGES topology number:')
70 FORMAT(
' The IGES topology number specifies the number of nodes and'/
" their arrangement in elements. The topology types (with the'/
' the number of nodes in parentheses) are:'//
1. Beam (2) 2. Triangle (3) 3. Triangle (6)'/
" 4 Triangle(9) S. Quad (4) 6. Quad (8)'/
" 7.Quad(12) 8. Thk Shi Wedg(12) 9. Thk Shl Wedg(18)'/
" 10. Thick Shell(16) 11. Thick Shell(24) 12. Solid Tetra(4)'/
" 13. Solid Tetra(10) 14. Solid Wedge(6) 15. Solid Wedge(15)/
' 16. Solid Wedge(24) 17. Solid Brick(8) 18. Solid Brick(20)')
7S FORMAT(
1'19. Solid Brick(32) 20.Axisym Line(2) 21.Axisym Line(3)/
2°'22. Axisym Line(4) 23. Axisym Tria(3) 24. Axisym Tria(6)/
3 ' 25. Axisym Quad(4) 26. Axisym Quad(8)')
80 FORMAT(' Why not enter: S for a 4-node quad. No further help’)
END

WO LW —

SUBROUTINE ZTMAP (LEVEL)
C Calledby: (main)
60 70 (20,40,50,10), LEVEL
10 CALL QABORT
20 WRITE(*,60)
30 RETURN
40 WRITE(*,70)
6010 30
50 WRITE(*,80)
G0 T0 30
60 FORMAT(' Enter the node numbers corresponding to IGES numbers:")
70 FORMAT(' Enter the node numbers for this element type that correspond'/
1 * to each number in the appropriate IGES topology type.')
80 FORMAT(' Why not enter: q NO further help!’)
END

146

Buffering of Commands

Squire.BYU inputs all information into an 80-character buffer. The
user may enter as many answers as he would like in each line of input. The
answers must be separated by spaces or commas. Buffering is cancelled
when a text string is read in, because no basis exists for evaluating the

meaning of delimiters.

Multi-Level Prompts

User actions determine the quantity of prompts given for each
input. No prompt is given when an answer has been typed ahead. Once the
buffer is empty, the first-level prompt is written to the screen. The user
may answer the question or hit the Return key without giving any response
to get further levels of prompts. It is suggested that three levels of
prompts be used. The first level is a terse request appropiate to an expert
user. The second level is a complete description of the information needed.
The third level suggests a response and tells the user that no further help
is available. Although three levels of prompts are recommended, the Squire

library will allow any number of prompt levels.

Creating Prompt Routines
A Fortran program, Smithy.BYU, may be used to create multi-level
prompt subroutines. Smithy requires a subroutine name and a set of

prompts to produce a subroutine for each input.

147

System Dependencies

System dependent features are localized in Squire to minimize
conversion efforts. Such features are found in routines: QCLEAR, QEDO,
QFILRD, QFILWR, and QSYSTM. An explanation of the feature and suggested

implementations for UNIX and VAX/VMS systems are given in the routine.

Use of External Statement

External statements are not frequently used in most Fortran
software, but are used in almost every routine by SQUIRE. An external
statement allows a subroutine name to be passed in an argument list. This
feature is needed to allow the programmer to easily use his own subroutines
to write prompts and display data for editing. When using Squire
subroutines, carefully note how external statements are used in the
examples that follow. Errors in the use of external statements usually
produce no errors until the program is executed. When a program reaches a
call statement containing a routine name that is not listed in an external

statement, it will abort.

Redirecting Input and Output

Input and output may be redirected to or from a disk file at any
time except at the input of a line of text. This feature can create a record
of the use of a program for verification, and allows the saved file to be used
to quickly run through the program and bring you to the point where you left
off. To save input, type @ > (greater than sign) followed by a space and the
name of the file where the data is to be saved. All subsequent input will be

saved to the file until another > symbol is typed, which causes the file to

148

be closed. To extract input information from a file, type a < (less than
sign), followed by the file name. The program will read all input from the
file until it completely reads the file. Currently Fortran Unit Numbers 18
and 19 are used for the redirected input and output files. This can easily be

changed by changing the appropiate statements in subroutine QINIT.

Internal Routines
Various subroutines and functions are called by other routines in
the Squire library, and not intended for use by the application programmer.

They are summarized here:

Input Utilities:
QBADIN - Call if invalid input, echos bad input, clears input buffer
QCIINT - Conditional input of an integer number. False if invalid
QCIREL - Conditional input of a real number. False if invalid
QINBUF - Reads in line of input when needed from keyboard or file
QNEXT - Parses next item of input from the input buffer
QNEXT2 - Same as QNEXT, used to avoid recursion
QNOBUF - Clears input buffer to initialize at start or after error

Prompt Routines:

QEDO to- Used in edit routines to prompt for: 0) new text,

QED9 1) edit command(S), 2) item to delete, 3) verify delete,
4) item to insert, S) value to insert, 6) edit command(3)
7) data OK?, 8) item to change, 9) value to change

QFILNM - Asks for name of input or output disk file

QFLIND - Asks for option when input file doesn't exist

QFLSAV - Asks for option when ouput file already exists

QRASTR- Asks for resolution of graphics terminals

QSITXT - Asks user if he is using metric units

QTBAUD- Asks user for baud rate of terminal

QTTYPE - Asks user for terminal type

Reserved Names

149

The following is a list of subroutine, function and 1abelied common

names that are used in Squire. The use of these names by the application

program may cause multiple definition errors.

QBADIN
QCLEAR
QED4
QED9
QFILRD
QINBUF
QLINEL
QNEXT2
QREDIR
QTERML

QBUFFR
QEDO
QEDS
QEDFIX
QFILWR
ININTQ
MENUSQ
QNOBUF
QSITXT
QTTYPE

QCHBUF
QEDI1
QED6
QEDINT
QF ILNM
QINIT
QMETRC
QPAUSE
QSYSTM
QTXTIN

QCIINT
QED2
QED7
QEDLIS
QFLIND
QINREL
QMORE
QRASTR
QTBAUD
QYESNO

QCIREL
QED3
QED8
QEDREL
QFLSAV
INWRDQ
QNEXT
QRDWRD
QTERM

Note that most of these names begin with a Q, to avoid most

conflicts with names used in application programs. Some integer functions

have a Q at the end of their name. This allows integer names to be used, and

avoids the need of integer declaration statements where these functions are

used.

150

INTEGER FUNCTION ININTQ

Purpose: ININTQ asks user to enter an integer value. If user inputs a string
that is an invalid integer (contains a period, letters, etc.), he will be
prompted to reenter the number. The user may enter a Q or q to quit input
(ININTQ is given a value of -99999), or a D or d to use the default value.

Format:
Use an external statement at the top of module for prompt subroutine:
EXTERNAL PROMPT
Call the function where needed
IVALUE = ININTQ(PROMPT ,IDEFLT)
where IVALUE is the integer value input, PROMPT the name of prompt routine and IDFFLT the
default value.

EXAMPLE
SUBROUTINE ITERAT(IVALUE)

C Enter the number of iterations, thendo them.
EXTERNAL ZNITER

C

C Enter the number of iterations, default is one.
NUM = ININTQ(ZNITER,1)

IF(NUM.LT.0) RETURN

RETURN
END

e N o]

SUBROUTINE ZNITER(LEVEL)
60T10(20,40,50,10), LEVEL
10 CALL QABORT
20 WRITE(*,60)
30 RETURN
40 WRITE(*,70)
GO TO 30
S50 WRITE(*,80)
G0 TO 30
60 FORMAT(' Enter number of iterations:')
70 FORMAT(' Please enter the number of iterations of algorithm Z'/
1 " that you would like to do.")
80 FORMAT(' Why not enter: 2 totry acouple. NO further help.’)
RETURN
END

151

REAL FUNCTION QINREL

Purpose: QINREL asks the user to enter a real value. If the user inputs an
invalid string (contains invalid letters, etc.), he will be prompted to reenter
the number. The user may enter a Q or g to quit input (QINREL is given a
value of -99999), or a D or d to use the default value.

Format:
Use an external statement at the top of module for prompt subroutine:
EXTERNAL PROMPT
Call the function where needed
VALUE = QINREL(PROMPT ,DEFALT)
where YALUE is the integer value input, PROMPT the name of the prompt routine and DEFALT is
the default value.

EXAMPLE
SUBROUTINE COORD(X,Y,2)
C Enter X, Y, and Z coordinates of the pipe.
EXTERNAL ZXCOOR, ZYCOOR, ZZCOOR
C
X= QINREL(ZXCOOR,0.0)
IF(X.EQ.-99999.) RETURN
Y= QINREL(ZYCOOR,0.0)
Z= QINREL(ZZCOOR,0.0)

RETURN
END

OO0

SUBROUTINE ZXCOOR(LEVEL)
60T70(20,40,50,10), LEVEL
10 CALL QABORT
20 WRITE(*,60)
30 RETURN
40 WRITE(*,70)
60 T0 30
50 WRITE(*,80)
60 70 30
60 FORMAT(' Enter X,Y,Z coordinates of pipe bend:")
70 FORMAT(' Please enter the X, Y, and Z coordinates of the pipe bend or enter just the'/

1 * X coordinate now and be prompted for the Y and Z coordinates later.’)
80 FORMAT(' Why notenter: 0.0 NO further help.")
RETURN
END

Note: In this example, ZXCOOR prompts for all three values, ZYCOOR would prompt for the X and Y
values, and ZZCOOR would prompt for just the Z value. The result is an adapting prompt.

152

SUBROUTINE QRDWRD

Purpose: QRDWRD is used to input a word of text that does not contain
spaces or commas. This is useful to input file names, program names, etc.
If the user enters a Q or g, a blank string will be returned.

Format;
Use an external statement at the top of module for prompt subroutine:
EXTERNAL PROMPT
Call the subroutine where needed
CALL QRDWRD(TEXT ,NCHAR ,PROMPT)
where TEXT is the text string input, NCHAR is the maximum number of characters allowed in the
string, and PROMPT the name of the prompt routine.

EXAMP
SUBROUTINE FOPEN(IDSK)

C Open a user named disk file for unit number IDSK for output
CHARACTER* 15 FILNAM
EXTERNAL ZFILNM

C

C Enter the file name
CALL QRDWRD(FILNAM, 15 ZFILNM)
OPEN(UNIT=IDSK ,FILE=FILNAM,STATUS="UNKNOWN')

RETURN
END

SUBROUTINE ZFILNM(LEVEL)
60 T0(20,40,50,10), LEVEL
10 CALL QABORT
20 WRITE(*,60)
30 RETURN
40 WRITE(*,70)
GOTO 30
S0 WRITE(*,80)
GO T0 30
60 FORMAT(" Enter output file name:")
70 FORMAT(" Please enter the name of the output file for the XYZ data.'/
! ; ')
80 FORMAT(' Why not enter: XYZ.DAT NO further help.")
RETURN
END

153

LOGICAL FUNCTION QTXTIN

Purpose: QTXTIN clears the input buffer and asks the user to enter a line
of text. Spaces and commas are ignored. The user may enter aQor qand a
biank string will be returned and the function will be false.

Format:
Use an external statement at the top of module for prompt subroutine:
EXTERNAL PROMPT
Call the function where needed
IF(.NOT.QTXTIN(STRING ,NCHAR ,PROMPT)) RETURN
where STRING is the character string to be input, NCHAR is the number of characters in the
string, and PROMPT the name of the prompt routine.

EXAMPLE:
SUBROUTINE START(TITLE)
C Enter atitle for this analysis
CHARACTER*72 TITLE
LOGICAL QTXTIN
EXTERNAL ZTITIN
c
IFCQTXTIN(TITLE,72,ZTITIN)) RETURN
C User didn't give a title, so set up a default title
TITLE =" Analysis of Hoop Stress, XYZ Company’

RETURN
END

o0

SUBROUTINE ZTITIN(LEVYEL)
60 70 (20,40,50,10), LEVEL
10 CALL QABORT
20 WRITE(*,60)
30 RETURN
40 WRITE(*,70)
60 T0 30
50 WRITE(*,80)
60 T0 30
60 FORMAT(" Enter title of this hoop stress analysis'/72%("'_"))
70 FORMAT(" Please enter a title for this analysis to be used to label it so that someone'/
! " besides our competitor may recognize it 6 months from now.'/72%('_"))
80 FORMAT(' Why not enter: Analysis of part #25398-121-8"/
1 " NO further help.’)
RETURN
END

154

SUBROUTINE QEDFIX

Purpose: QEDFIX provides a general purpose edit of a fixed combination of
real, integer and text items (The user can only change items, not insert or
delete). To edit values, the programmer needs to write a subroutine to list
out the data (arguments are the real, integer, and text arrays), and include
a call statement where needed. Real, integer and text items must be
numbered consecutively. An arbitrary number of varible-length strings
may be edited, but the strings must be concatenated together in a single
global string which is passed through the argument list.

Format:
Use an external statement at the top of module for listing subroutine:
EXTERNAL LIST
Call the subroutine where needed
CALL QEDFIX(LIST, KA A, KM,M, KT,IT KC,ITCNT, IRS,IRE, IIS,IIE, ITS,ITE)

where: LIST - Name of subroutine that lists out data (programmer supplied)
KA - Number of real values to be edited
A - Array of real numbers to be edited
KM - Number of integer values to be edited
M - Array of integer numbers to be edited
KT - Total number of text characters in the global string
T - Global string to be edited
KC - Number of text strings in the global string

ITCNT - Array of the number of characters in each text string
IRS,IRE - Starting, ending item number of real values

[IS,IIE - Starting, ending item number of integer values
ITS,ITE - Starting, ending item number of text strings

The programmer-supplied subroutine used to list out the data has the
subroutine statement:

SUBROUTINE LIST(A, M, IT)
REAL A(KA)

INTEGER M(KM)
CHARACTER*KT IT

135

EXAMPLE:
SUBROUTINE ELEMNT(IVAL ,ELEM ,ENAM)
C Edit element number NUMENT
COMMON/CLSEDT/NUMENT NUMINT NUMREL NUMTXT
INTEGER IVAL(*), ELEM(*), ITCNT(1)
CHARACTER* 15 ENAM(S0), ENAME
EXTERNAL ZELMHD
DATA ITCNT/15/
C Find location of integer values, number of nodes
LOC = ELEM(NUMENT)
NUMINT = IVAL(LOC+ 1)
ENAME = ENAM(IVAL(LOC))
C Two other integer values besides nodes are edited
CALL QEDFIX(ZELMHD, 1A, NUMINT+2,VAL(LOC+2), 15,ENAME,
1 1,ITCNT, 0,0, 2,NUMINT+3,1,1)

RETURN
END

¢

c
SUBROUTINE ZELMHD(A,IVAL ENAM)
COMMON/CLSEDT/NUMENT ,NUMINT NUMREL ,NUMTXT
INTEGER IVAL(1)
CHARACTER* 15 ENAM

C

WRITE(*,10) NUMENT ,ENAM,IVAL(1),IYAL(2)
10 FORMAT(15X, Edit of ELEMENT #* iS//
1 1) Element Name: *A15/
2 ' 2) Material Property ID:' 16/
3 " 3) Geometric Property ID:",16)
WRITE(*,20)
20 FORMAT(//' Nodes in element connectivity:')
WRITE(*,30) (J+1,IVAL(J) J=3 NUMINT+2)
30 FORMAT(1X,5(12,'),15,4X),12,')',15)
RETURN
END

156

SUBROUTINE QEDLIS

Purpose: QEDLIS provides a general purpose edit of a combination of real,
integer and text items. The user may change, insert or delete any type of
data. To edit a set of values, the programmer needs to write a subroutine
to list out the data, and inciude a call statement where the edit should
occur. Real, integer, and text items must be numbered consecutively. For
example, if a maximum of 10 real, 15 integer, and 7 text items were
edited, the reals would be numbered 1-10, integers 11-25 and text strings
26-32. All strings in the text array have the same length.

Format:

Use an external statement at the top of module for listing subroutine:
EXTERNAL LIST

Call the subroutine where needed
CALL QEDLIS(LIST, R,NR,NRX, M ,NM ,NMX, T ,NT ,NTX NC)

where: LIST - Name of subroutine that lists out data (programmer supplied)
R - Array of real numbers to be edited
NR - Number of real values in array. Updated as reals are inserted, deleted
NRX - Maximum number of resal values array R can hold
M - Array of integer numbers to be edited
NM - Number of integers in array. Updated as integers are inserted, deleted
NMX - Maximum number of integer values array M can hold
i - Array of text characters to be edited
NT - Number of strings in array. Updated as strings are inserted, deleted
NTX - Maximum number of text strings array T can hold
NC - Number of characters in each string in the array

The programmer-supplied subroutine used to list out the data has the
subroutine statement:

SUBROUTINE LIST(NR,R, NMM, NT.T)
REAL R(NRX)

INTEGER M(NMX)

CHARACTER*NC T(NTX)

EXAMPLE:

SUBROUTINE MLCONS (RYAL, IYAL, CONS)

C Edit node list for multiple constraint number NUMENT
COMMON/CLSEDT/NUMENT ,NUMINT ,NUMREL ,NUMTXT
DIMENSION RYAL(*), IVAL(*), CONS(*)
CHARACTER*1 T
EXTERNAL ZMCNHD

C Find location of integer values, number of nodes
LOC = CONS(NUMENT)

NUMINT = IVAL(LOC+1)*2 + 2
LOCR = [VAL(LOC+2)
NUMREL = IVAL(LOC+ 1)

C Two other integer values besides nodes are edited
CALL QEDLIS(ZMCNHD, RYAL(LOCR),NUMREL,20, IVAL(LOC+3),

1 NUMINT,40, T7,0,0,0)
RETURN
END
o
c
SUBROUTINE ZELMHD(NR ,RYAL NM,IVAL NT,T)
COMMON/CLSEDT/NUMENT ,NUMINT NUMREL ,NUMTXT
DIMENSION RVAL(20), IYAL(40)
CHARACTER*(*) T
c
WRITE(* *) ' Edit of Multiple Constraint #*, NUMENT
C
WRITE(*,10)
10 FORMAT(//' Dependent node: 21)',15/15X,” DOF: 22)',1S//
1 ‘Independent Node Degree of Freedom Ratio')
WRITE(*,20) (19+J%2 IVAL(2%J-1),2%J+20,IVAL(2%*J) J RVAL(Y),
! J=1,NUMREL)
20 FORMAT(1X,2(13,),18),13,') ,613.5)
RETURN

END

157

158

SUBROUTINE QEDINT

Purpose: QEDINT provides a general purpose edit of an array of integer
numbers. The user may change, insert, or delete values. To edit a set of
values, the programmer needs to write a subroutine to write a header for
the data, and include a call statement where the edit should occur.

Format:

Use an external statement at the top of module for header listing subroutine:
EXTERNAL HEAD

Call the subroutine where needed
CALL QEDINT(HEAD, M, N, NMAX, NCOL , NPAGE)

where: HEAD - Name of subroutine that writes a header(programmer supplied)
M - Array of integer numbers to be edited
N - Number of integer values in array. Updated as items inserted or deleted.
NMAX - Maximum number of integer values array can hold
NCOL - Number of columns for listing integer numbers
(NCOL= 1-5 for that many columns, 6 for 2 double columns)
NPAGE - Maximum number of integers allowed on the screen at one time

XAMPL

SUBROUTINE ENCONS(IVAL ,CONS)

C Edit nodes for permanent constraint NUMENT
COMMON/CLSEDT/NUMENT ,NUMINT NUMREL NUMTXT
INTEGER IVAL(*), CONS(*)
EXTERNAL ZCONHD

C Find location of integer values, number of nodes
LOC = CONS(| ,NUMENT)
NUMINT = IVAL(LOC+ 1)

C Allow up to 100 nodes, but only 75 may appear on the screen at one time.
C The editor will go to 2 full screen edits if over 75.
CALL QEDINT(ZCONHD, IVAL(LOC+3), NUMINT,100, S, 75)

RETURN
END

SUBROUTINE ZCONHD
COMMON/CLSEDT/NUMENT ,NUMINT ,NUMREL NUMTXT
WRITE(*,10) NUMENT

10 FORMAT(" Edit of Nodes for Permanent Constraint #*,15)
RETURN
END

139

SUBROUTINE QEDREL

Purpose: QEDREL provides a general purpose edit of an array of real
numbers. The user may change, insert or delete data. To edit a set of
values, the programmer needs to write a subroutine to output a header for
the data, and include a call statement where the edit should occur.

Format:

Use an external statement at the top of module for header listing subroutine:
EXTERNAL HEAD

Call the subroutine where needed
CALL QEDREL(HEAD, A, N, NMAX, NCOL, NPAGE)

where: HEAD - Name of subroutine that writes a header(programmer supplied)

A - Array of real numbers to be edited

N - Number of real values in array. Updated as items inserted or deleted.
NMAX - Maximum number of real values array can hold

NCOL - Number of columns to list real numbers

(NCOL = 1-4 for that many columns, S for 2 double columns)
NPAGE - Maximum number of reals allowed on the screen at one time

EXAMPLE:

SUBROUTINE EMPROP(IYAL, RYAL, MATL)

C Edit list of material properties for prop # NUMENT
COMMON/CLSEDT/NUMENT NUMINT NUMREL ,NUMTXT
DIMENSION IYAL(*), RYAL(*), MATL(*)

EXTERNAL ZPRPHD

C Find location of real values for the material property
LOC = MATL(1 ,NUMENT) + 3
NUMREL = IVAL(LOC+1) + 2

C Edit the material property values
CALL QEDREL(ZPRPHD, RYAL(LOC+4), NUMREL,100, 4, 60)

RETURN
END

SUBROUTINE ZPRPHD
COMMON/CLSEDT/NUMENT NUMINT NUMREL ,NUMTXT
WRITE(*,10) NUMENT

10 FORMAT(" Edit of Properties for Material #°,|5)
RETURN
END

160

INTEGER FUNCTION INWRDQ

Purpose: INWRDQ lets the user select an option using key words. INWRDQ
returns the number of the selected command. For example, if SAVE is
chosen from the commands: READ, WRITE, SAVE, QUIT; INWRDQ returns "3"
(3rd word was selected). The user need not enter the entire command, just
a unique substring. When a substring matches several commands, the first
command is selected. Command words are stored in Al format, separated
by delimiters. The delimiter is the first character in the array.

Format:
Dimension, fill data for command array, use external statement for prompt routine
CHARACTER* 1 WORDS(NCHAR)
DATAWORDS/'$','C’,'0','M','1*, '$','C')0 'M','2' 'S/
EXTERNAL PROMPT
Call the subroutine where needed
IOPT = INWRDQ(WORDS,NCHAR ,PROMPT)
where WORDS- command words, NCHAR- # of characters in WORDS, PROMPT- prompt routine.

EXAMPLE
SUBROUTINE COMMND

C Let the user select a command to execute
CHARACTER*1 WORD(22)
DATAWORD/'$''R*,’E',)A,D",'$")W /R I', T E' S S A Y E S Q. 0,1, T8/
EXTERNAL ZCOMND
C Command Selection, branch to the proper option
10PT = INWRDQ(WORD,22 ,ZCOMND)
C Read,Write, Save, Quit
G0TO(10, 20, 30, 40),I0PT

RETURN
END

SUBROUTINE ZCOMND(LEVEL)
60 70 (20,40,50,10), LEVEL
10 CALL QABORT
20 WRITE(*,60)
30 RETURN
40 WRITE(*,70)
60 T0 30
S0 WRITE(*,80)
G0 T0 30
60 FORMAT('Enter Command (READ ,WRITE ,SAVE QUIT):")
70 FORMAT(" Please enter: READ data, WRITE data, SAVE data, or QUIT')
80 FORMAT(' Why not enter: QUIT to stop program. NO further help.')
END

161

INTEGER FUNCTION MENUSQ
Purpose: MENUSQ lets the user select an option or command through a key
letter. MENUSQ returns the number of the letter that was selected.

Format:
Dimension, fill data for command array, use external statement for prompt routine
CHARACTER* 1 WORDS(NCHAR)
DATA WORDS/'A','B" C','D"/
EXTERNAL PROMPT
Call the subroutine where needed
I0PT = MENUSQ(WORDS ,NCHAR ,PROMPT)
where WORDS is the command letter array, NCHAR is the number of characters in WORDS, and
PROMPT the name of the prompt routine.

EXAMPLE
SUBROUTINE COMMND

C Let the user select a command to execute
CHARACTER* | WORDS(22)
DATA WORDS/'r*,'w’,'s','q"/
EXTERNAL ZCOMND

C Command Selection, branch to the proper option
IOPT = MENUSQ(WORDS ,4, ZCOMND)

C Read,Write, Save, Quit
GOTO(10, 20, 30, 40),I0PT

RETURN
END

[N o]

SUBROUTINE ZCOMND(LEVEL)
60 T0(20,40,50,10), LEVEL
10 CALL QABORT
20 WRITE(*,60)
30 RETURN
40 WRITE(*,70)
60 T0 30
S0 WRITE(*,80)
G0 70 30
60 FORMAT('Enter Command (r.,w,s,q):")
70 FORMAT(' r - Read data from a disk file'/
1 'w - Write data to the line printer’/
2 ' 5 - Save data to a disk file'/
3 ' q - Quit program execution’)
80 FORMAT(' Why notenter: q tostop program. NO further help.')
END

162

LOGICAL FUNCTION QYESNO
Purpose: INWRDQ lets user select 1 of 2 options with a yes/no question.
QYESNO is true when user answers yes, false when user answers no.

Format:
Use external statement at top of module for prompt routine, declare QYESNO logical
EXTERNAL PROMPT
LOGICAL QYESNO
Call the subroutine where needed
IF(QYESNO(PROMPT)) THEN
do alternative # 1
ELSE
do the other alternative
END IF
where PROMPT is the name of the prompt routine.

EXAMPLE
SUBROUTINE COMMND
C Let the user select a command to execute
LOGICAL QYESNO
EXTERNAL ZCOMND
C See if user wants 1o continue with this program
IF(QYESDNO(ZCOMND)) THEN

RETURN
ELSE
STOP

END IF

c
END

c
c

SUBROUTINE ZCOMND(LEVEL)
60 10 (20,40,50,10), LEVEL
10 CALL QABORT
20 WRITE(*,60)
30 RETURN
40 WRITE(*,70)
GO TO 30
50 WRITE(*,80)
60 T0 30
60 FORMAT('Continue? (y/n)")
70 FORMAT(' Enter: y tocontinue running this program.'/
1 ' n tostop the program.')
80 FORMAT(' Why not enter: n tostop program. NO further help.')
END

163

SUBROUTINES QFILRD & QFILWR

Purpose: QFILRD and QFILWR open disk files for input and output
respectively, using file names of the user's choice. If the input file does
not exist, the user is warned and asked to: 1) input a new file name, 2)
examine current files, or 3) quit execution. If the output file aiready
exists, the user is warned and asked to: 1) input a new file name, 2)
overwrite existing file, 3) examine current files, or 4) quit execution.

Format:
Call the subroutine where needed
CALL QFILRD(IDSK,ITYP NBYTE)
CALL QFILWR(IDSK,ITYP ,NBYTE)
where
IDSK - Fortran Unit Number for the disk file
ITYP - 1. Sequential, Formatted
2. Sequential, Unformatted
3. Direct Access, Formatted
4. Direct Access, Unformatted _
NBYTE - Number of bytes in record (only use for Direct Access Files)

EXAMPLE
SUBROUTINE INOUT

C Input data from disk, edit it, write it back out to disk
WRITE(* ,*) ‘Selection of bulk data input file:'
CALL QFILRD(8,1,0)

READ(8,).......
CLOSE(UNIT=8)
C Edit Data
c

WRITE(*,*) ‘Save corrected bulk data to disk..."
CALL QFILWR(8,1,0)
WRITE(8,10)

CLOSE(UNIT=8)
RETURN
END

164

SUBROUTINE QCLEAR

Purpose: QCLEAR clears the terminal screen. It may be called by the
programmer and is needed by the edit subroutines. QCLEAR is used with
QTERM in computers that use different commands to clear different types
of terminals. Terminal parameters are passed in COMMON QTERML.

Format; CALL QCLEAR

SUBROUTINE QINIT

Purpose: QINIT is used to initial the input buffer and various Squire flags.
It should be called at the beginning of the application program, before any
other Squire routine is used.

Format:
CALL QINIT

SUBROUTINE QMETRC
Purpose: QMETRC asks the user if he is using Metric or English units.

Format:

CALL QMETRC(METRIC)
where: METRIC is 1 for metric units, 2 for English units. METRIC can then be
used as a subscript to identify the correct scale factor (Y=X*SCALE(METRIC))

LOGICAL FUNCTION QMORE
Purpose: QMORE suppresses output when the user has typed ahead. It may
be used by the programmer so that local write statements suppress output

consistently with the automatic suppression of the prompt routines.

Format:
Declare QMORE to be a logical at the top of the module
LOGICAL QMORE
Use QMORE where output is directed to the screen between prompts
IF(QMORE(IDUMMY)) write intermediate output
where: IDUMMY is a dummy argument,

Example:
IF(QMORE(IDUMMY)) THEN
WRITE(* *) ' Summary of Program Status’
WRITE(*,10) NUMA NUMB NUMC
10 FORMAT(/ WidgetsA WidgetsB WidgetsC'/15,112,111)
END IF

165

SUBROUTINE QPAUSE
Purpose: QMORE pauses and waits for user to hit return before continuing
with program execution. It may be used to pause after output is displayed.

Format:
CALL QPAUSE
Example:
C List the table to the screen, 20 lines per screen
K=1
DO101=1 N
WRITE(*,%) "VALUE(",I,") =" ,VALUE(I)
IF(K.GE.20) THEN
CALL QPAUSE
CALL QCLEAR
K=1
ELSE
K=K+ 1
END IF
10 CONTINUE

SUBROUTINE QSYSTM
Purpose: QSYSTM executes a system (monitor) command from Fortran,
supported on muiti-tasking operating systems such as VMS and UNIX.

Format:
CALL QSYSTM(TEXT)
where TEXT is the system command.

Example:
C List the current files on the UNIX operating system
CALL SYSTEM('1s -1F")

SUBROUTINE QTERM

Purpose: QTERM asks the user to identify the terminal type and other
attributes that may be needed to know how to clear the screen and apply
graphics commands. On some systems a call to QTERM should be included
in QINIT. COMMON block QTERML is used to pass baud rate, terminal type,
and terminal size to other routines (such as QCLEAR).

Format:
CALL QTERM

APPENDIX D

CV FEM COMMAND SUMMARY

166

167

QUICK REFERENCE for FEM MESH GENERATION
on COMPUTERVISION (CADDS4)

Brant A. Ross - October 1984

This reference helps the rusty CADDS4 user remember how to generate a
finite element mesh. This information is not sufficient to train the novice
user, but highlights the FEM commands that should be learned.

Note: Letters essential to CADDS4 commands are capitalized. Other
letters are given for clarity. The letter "d" indicates that a point on the
screen is selected (digitized) using the graphics tablet.

Starting
I. Logging on: hit <cnti> L, enter user name, password when prompted.

2. Torun CADDS4:
CADDS

3. To begin to define or edit a part or model:
ACTivate PARt Partname -where Partname is the model name
ACTivate DRAwing | -to select name for the "drawing"

4. To define aview: (if you are starting from scratch)
DEFine VIEw TOP: X11Y8.5
When editing an existing part, a view will be automatically selected.

Defining the Wireframe
S. To Insert points using X, Y, and Z absolute coordinates:
INSert POInt: X value Y value Z value

6. To insert a line between two points:
INSert LINe: POl dd

FEM Definition
7. Toinitialize: (necessary before working with any FEM entities)
INITialize FEM

8. To insert a gridpoint (node) on a point:
INSert GPOInt: POInt d

10.

11.

12.

168

To insert a QUAD element on 4 gridpoints:
INSert ELEMent TYPE QUAD: <rtn» <rtn> <rtn> dddd

To insert gridpoints along a line with variable spacing:

GENerate GPOInt ON N num DISTANCE dis ARITHMETIC delt: d
where num is the number of gridpoints to be inserted, dis the initial
distance between points, and delt the distance to be added to each
successive interval.

To generate a mesh of Quad elements with regular spacing:
GENerate MESH AUTO TYPE QUAD: d;d;d;d <rtn> UNH j UNV k
where d;d;d;d represents digitizing the lines that make up the four
sides of the region. The number j is the number of elements to be
digitized along the first side digitized, and the number k is the

number of elements along the second side.

To copy the existing mesh about a "mirror” for symmetric models:
GENerate MESH MIRRor <rtn> GPINCrement n: WINdow d, d,,

dy 04 Oy
where d, and d, define the window encompassing the mesh to be
copied, and dy, d, and fy define the plane the the existing mesh is
“mirrored” around.

To merge redundant gridpoints caused by automeshing adjoining
regions:
MERge GPOI: dd

Editing
14. To delete items, where name is the entity name (LIN, POI, GPOI, etc.)

DELete ENTity: name d

15. To move items, where name is the entity name (LIN, POI, GPOI, etc.)

TRAnslate ENTity: name d,; d, dg
where d, identifies the item, and d, and d, specify the local motion.

169

16. A construction plane may be needed when translating entities to an
arbitrary location on a 3-D model. The construction plane sets the
third dimension with graphics tablet input. Define a construction
plane using three entities in the correct plane in the model:
DEFine CPL name: dd d

then activate that plane using the set command:
SET CPL name

delete old construction planes
DEL CPL name

Miscellaneous

17. To change zoom to get whole part within window:
Z00m DRAwing ALL

18. To zoom to a specified area, digitizing the corners of the area are: dd
Z0Om DRA WIN: dd

19. To plot graphics on the local thermal printer:
PLOt HARdcopy

Neutral File

20. To create a neutral file with the Navy software (BYU system only)
RUN PROGram CADDSAUX.PUTNEUTRAL
The program will prompt you for a filename.

21. To access the tape drive and write the file to a tape:
ATTACH MT, TAPO

CONVERT file.ext MT //FORMAT=(BLKSIZ=80,RECSIZ=80),CONVERT=C-E

This will write a text file in EBCDIC to the tape, in card image
format. The destination computer must be able to read EBCDIC.

FLEXIBLE ENGINEERING SOFTWARE: AN INTEGRATED WORKSTATION
APPROACH TO FINITE ELEMENT ANALYSIS

Brant Arnold Ross
Department of Mechanical Engineering
Ph.D. Degree, April 1985

ABSTRACT

One obstacie preventing more engineers from using finite element
analysis (FEA) is the difficulty of transferring data between steps in the
modeling process. A Fortran computer program, Rosetta.BYU, has been
developed to open data paths between finite element preprocessors (mesh
generators) and finite element analysis programs, using a custom data
structure. It accept a neutral data files, Version 2.0 IGES data files, and
Movie.BYU files for input/output. An application of Rosetta is described.

A general workstation manager program, Davinci.BYU, is reviewed
that provides a support layer between the engineer and the operating
system, organizes software and data files, and facilitates on-line
documentation and demonstrations. Requirements of a good user interface
are discussed and supporting software, Squire.BYU, is described. An
application of this software in an industrial setting is described.

COMMITTEE APPROVAL:] ey (r’/ Tl Lk
Kenneth W. Chase Committee Chairman

A EH. L

Ste\;en E. Benzleﬁﬁme Member
o £ Fadir—

Alan R. Parkinson, Committee M

seph C. Frée Department Chalrman

	Flexible Engineering Software: An Integrated Workstation Approach to Finite Element Analysis
	BYU ScholarsArchive Citation

	Front matter
	Title page

	Approvals

	Acknowledgments

	Table of Contents

	List of Illustrations

	1.) Introduction

	2.) History of Engineering Computing

	Batch Processing

	Interactive Systems

	Computer Graphics

	Distributed Systems

	The Call for Integration
	An Integrated Design Process
	Databases - The Centralized Solution

	Current Progress in Integration

	3.) Transfer of Finite Element Data

	Opening the Data Path

	Neutral File Development

	Producing the Neutral File

	Reformatter Development

	4.) An Engineering Workstation Environment
	Workstation Environment

	Data File Management

	Industry Application

	5.) Developing Engineering Software

	6.) A Sample Problem

	Model Generation

	Neutral File Generation and Transfer
	The SAP IV Analysis

	7.) Discussion and Conclusion
	FEA Data Transfer
	Engineering Workstation Environment
	Engineering Software Development
	Future Work

	References
	Appendix A: ROSETTA Documentation
	Appendix B: DAVINCI Documentation
	Appendix C: SQUIRE Programming Guide
	Appendix D: CV FEM COMMAND SUMMARY
	Abstract
	End matter

